首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight-ring cyclic polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp) aromatic amino acids recognize predetermined six base pair sites in the minor groove of DNA. Two four-ring polyamide subunits linked by (R)-2,4-diaminobutyric acid [(R)H2Ngamma] residue form hairpin polyamide structures with enhanced DNA binding properties. In hairpin polyamides, substitution of Hp/Py for Py/Py pairs enhances selectivity for T. A base pairs but compromises binding affinity for specific sequences. In an effort to enhance the binding properties of polyamides containing Hp/Py pairings, four eight ring cyclic polyamides were synthesized and analyzed on a DNA restriction fragment containing three 6-bp sites 5'-tAGNNCTt-3', where NN = AA, TA, or AT. Quantitative footprint titration experiments demonstrate that contiguous placement of Hp/Py pairs in cyclo-(gamma-ImPyPyPy-(R)H2Ngamma-ImHpHpPy-) (1) provides a 20-fold increase in affinity for the 5'-tAGAACTt-3' site (Ka = 7.5 x 10(7)M(-1)) relative to ImPyPyPy-(R)H2Ngamma-ImHpHpPy-C3-OH (2). A cyclic polyamide of sequence composition cyclo-(gamma-ImHpPyPy-(R)H2Ngamma-ImHpPyPy-) (3) binds a 5'-tAGTACTt-3' site with an equilibrium association constant KA= 3.2 x 10(9)M(-1), representing a fivefold increase relative to the hairpin analogue ImHpPyPy-(R)H2Ngamma-ImHpPyPy-C3-OH (4). Arrangement of Hp/Py pairs in a 3'-stagger regulates specificity of cyclo-(gamma-ImPyHpPy-(R)H2Ngamma-ImPyHpPy-) (5) for the 5'-tAGATCTt-3' site (Ka = 7.5 x 10(7)M(-1)) threefold increase in affinity relative to the hairpin analogue ImPyHpPy-(R)H2Ngamma-ImPyHpPy-C3-OH (6), respectively. This study identifies cyclic polyamides as a viable motif for restoring recognition properties of polyamides containing Hp/Py pairs.  相似文献   

2.
Pyrrole-imidazole (Py-Im) polyamides containing stereospecifically alpha-amino- or alpha-hydroxyl-substituted gamma-aminobutyric acid as a 5'-TG-3' recognition element were synthesized by machine-assisted Fmoc solid-phase synthesis. Their binding properties to predetermined DNA sequences containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T, T.A, G.C, and C.G) were then systematically studied by surface plasmon resonance (SPR). SPR results revealed that the pairing of stereospecifically alpha-amino-/alpha-hydroxyl-substituted gamma-aminobutyric acids, (R or S)-alpha,gamma-diaminobutyric acid (gammaRN or gammaSN) and (R or S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaRO or gammaSO), side-by-side with beta-alanine (beta) in such polyamides significantly influenced the DNA binding affinity and recognition specificity of hairpin polyamides in the DNA minor groove compared with beta/beta, beta/gamma, and gamma/beta pairings. More importantly, the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) favorably binds to a hairpin DNA containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T) with dissociation equilibrium constant (K(D)) of 1.9 x 10(-)(7) M over N.N' = T.A with K(D) = 3.7 x 10(-)(6) M, with a 19-fold specificity. By contrast, Ac-Im-gammaSN-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSN) binds to the above sequence with N.N' = A.T with K(D) = 8.7 x 10(-)(7) M over N.N' = T.A with K(D) = 8.4 x 10(-)(6) M, with a 9.6-fold specificity. The results also show that the stereochemistry of the alpha-substituent, as well as the alpha-substituent itself may greatly alter binding affinity and recognition selectivity of hairpin polyamides to different DNA sequences. Further, we carried out molecular modeling studies on the binding by an energy minimization method, suggesting that alpha-hydroxyl is very close to N3 of the 3'-terminal G to induce the formation of hydrogen bonding between hydroxyl and N3 in the recognition event of the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) to 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T). Therefore, SPR assays and molecular modeling studies collectively suggest that the (S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaSO) may act as a 5'-TG-3' recognition unit.  相似文献   

3.
The pharmacokinetic properties of three pyrrole-imidazole (Py-Im) polyamides of similar size and Py-Im content but different shape were studied in the mouse. Remarkably, hairpin and cyclic oligomers programmed for the same DNA sequence 5'-WGGWWW-3' displayed distinct pharmacokinetic properties. Furthermore, the hairpin 1 and cycle 2 exhibited vastly different animal toxicities. These data provide a foundation for design of DNA binding Py-Im polyamides to be tested in vivo.  相似文献   

4.
Quantitative microarray profiling of DNA-binding molecules   总被引:2,自引:0,他引:2  
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of 5'-WWACGT-3' (W = A,T). A linear beta-linked polyamide programmed to target a (GAA)3 repeat yielded a CSI microarray-derived sequence motif of 5'-AARAARWWG-3' (R = G,A). Quantitative DNase I footprinting of selected sequences from each microarray experiment enabled quantitative prediction of Ka values across the microarray intensity spectrum.  相似文献   

5.
BACKGROUND: Pyrrole-imidazole polyamides are synthetic ligands that recognize predetermined sequences in the minor groove of DNA with affinities and specificities comparable to those of DNA-binding proteins. As a result of their DNA-binding properties, polyamides could deliver reactive moieties for covalent reaction at specific DNA sequences and thereby inhibit DNA-protein interactions. Site-specific alkylation of DNA could be a useful tool for regulating gene expression. As a minimal first step, we set out to design and synthesize a class of hairpin polyamides equipped with DNA alkylating agents and characterize the specificity and yield of covalent modification. RESULTS: Bis(dichloroethylamino)benzene derivatives of the well-characterized chlorambucil (CHL) were attached to the gamma turn of an eight-ring hairpin polyamide targeted to the HIV-1 promoter. We found that a hairpin polyamide-CHL conjugate binds and selectively alkylates predetermined sites in the HIV promoter at subnanomolar concentrations. Cleavage sites were determined on both strands of a restriction fragment containing the HIV-1 promoter, revealing good specificity and a high yield of alkylation. CONCLUSIONS: The ability of polyamide-CHL conjugates to sequence specifically alkylate double-stranded DNA in high yield and at low concentrations sets the stage for testing their use as regulators of gene expression in cell culture and ultimately in complex organisms.  相似文献   

6.
7.
通过克隆hKv4.3的启动子区和相关的上游调控元件,对hKv4.3基因在转录水平的调控进行了分析.对启动子区5'端一系列的删除突变分析证明,hKv4.3基因的最小功能启动子区是位于转录起始位点附近的-156~+2bp序列.经序列分析发现,这个启动子缺乏典型的TATA-box,却存在另外3个元件,即E-box(CANNTG),CArG-box[CC(A/T)6GG]和CACC-box(GGTGC),其中CArG-box对该启动子活性起关键作用.同时在启动子区找到一个未见报道的大小为10bp的抑制子T,删除抑制子T,则启动子活性增加1倍以上.  相似文献   

8.
The sequence-specific DNA alkylation by conjugates 4 and 5, which consist of N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides and 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) linked with an indole linker, was investigated in the absence or presence of partner Py-Im polyamide 6. High-resolution denaturing polyacrylamide gel electrophoresis revealed that conjugate 4 alkylates DNA at the sequences 5'-(A/T)GCCTA-3' through hairpin formation, and alkylates 5'-GGAAAGAAAA-3' through an extended binding mode. However, in the presence of partner Py-Im polyamide 6, conjugate 4 alkylates DNA at a completely different sequence, 5'-AGGTTGTCCA-3'. Alkylation of 4 in the presence of 6 was effectively inhibited by a competitor 7. Surface plasmon resonance (SPR) results indicated that conjugate 4 does not bind to 5'-AGGTTGTCCA-3', whereas 6 binds tightly to this sequence. The results suggest that alkylation proceeds through heterodimer formation, indicating that this is a general way to expand the recognition sequence for DNA alkylation by Py-Im seco-CBI conjugates.  相似文献   

9.
To extend the target DNA sequence length of the hairpin pyrrole-imidazole (Py-Im) polyamide 1, we designed and synthesized Y-shaped and tandem hairpin Py-Im polyamides 2 and 3, which possess 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) as DNA-alkylating moieties. High-resolution denaturing polyacrylamide gel electrophoresis by using 5'-Texas-Red-labeled 465 base pair (bp) DNA fragments revealed that conjugates 2 and 3 alkylated the adenine of the target DNA sequences at nanomolar concentrations. Conjugate 2 alkylated adenine N3 at the 3' end of two 8 bp match sequences, 5'-AATAACCA-3' (site A) and 5'-AAATTCCA-3' (site C), while conjugate 3 recognized one 10 bp match sequence, 5'-AGAATAACCA-3' (site A) in the 465 bp DNA fragments. These results demonstrate that seco-CBI conjugates of Y-shaped and tandem hairpin polyamides have extended their target alkylation sequences.  相似文献   

10.
Hairpin polyamides coupled head-to head with alkyl linkers of varying lengths were synthesized, and their DNA binding properties were determined. The DNA binding affinities of six-ring hairpin dimers Im-Im-Py-(R)[Im-Im-Py-(R)(HNCO(CH))(n)(CO)gamma-Py-Py-Py-beta-Dp](NH)gamma-Im-Py-Py-beta-Dp (1-4) (where n = 1-4) for their 10-bp, 11-bp, and 12-bp match sites 5'-TGGCATACCA-3', 5'-TGGCATTACCA-3', and 5'-TGGCATATACCA-3' were determined by quantitative DNase I footprint titrations. The most selective dimer Im-Im-Py-(R)[Im-Im-Py-(R)(HNCO(CH)(2))(2)(CO)gamma-Py-Py-Py-beta-Dp](NH)gamma-Im-Py-Py-beta-Dp (2) binds the 10-bp site match site with an equilibrium association constant of K(a) = 7.5 x 10(10) M(-1) and displays 25- and 140-fold selectivity over the 11-bp and 12-bp match sites, respectively. The affinity toward single base pair mismatched sequences is 4- to 8-fold lower if one hairpin module of the dimer is affected, but close to 200-fold lower if both hairpin modules face a single mismatch base pair. The head-to-head hairpin dimer motif expands the binding site size of DNA sequences targetable with polyamides.  相似文献   

11.
Electrospray ionization mass spectrometry was utilized to investigate the noncovalent complexes between novel polyamides and DNA containing the TCCT sequence. We analyzed the noncovalent binding of the polyamides with the DNA and assessed their relative affinities and stoichiometry. The results confirm that hairpin polyamides have higher binding affinities than three-ring polyamides. The hairpin polyamide (PyPyPyPygammaPyImImPybetaDp) has the highest affinity, and the beta-linked polyamide (PyPyPybetaImImImbetaDp) shows a dominant 1:2 binding stoichiometry. Two groups of competition experiments were undertaken to compare the binding affinities of the duplex DNA with different polyamides directly. The affinity scale thus obtained for the group-1 polyamides is PyPyPyPygammaPyImImPybetaDp > PyPyPybetaImImImbetaDp approximately PyPyPygammaImImImbetaDp > PyPyPybetaDp > PyImImbetaDp approximately ImImPybetaDp, and the order for the group-2 polyamides is PyPyPygammaImImImbetaDp > PyPyPygammaImImImbetaOEt > PyPyPygammaImImImbetaCOOH.  相似文献   

12.
13.
Electrochemical impedance probing of TATA binding protein (TBP) based on TATA box site-specific binding was described in this work. A sensitive detection of TBP was developed from TATA box DNA self assembly on the electrode and the impedance changes induced by TBP binding. Electrochemical impedance spectroscopy (EIS) probing of TBP had a sensitivity of 0.8 nM with excellent selectivity. Moreover, the interferences of triplex forming oligonucleotides (TFOs) and anticancer drug daunomycin on TBP binding to TATA box DNA were investigated by EIS. TFOs reduced the stability of TBP binding to TATA box, but daunomycin completely inhibited the TBP binding.  相似文献   

14.
15.
Fluorescent methods to detect specific double-stranded DNA sequences without the need for denaturation may be useful in the field of genetics. Three hairpin pyrrole-imidazole polyamides 2-4 that target their respective sequences 5'-WGGGWW-3', 5'-WGGCCW-3', and 5'-WGWWCW-3' (W = A or T) were conjugated to thiazole orange dye at the C-termini to examine their fluorescence properties in the presence and absence of match duplex DNA. The conjugates fluoresce weakly in the absence of DNA but showed significant enhancement (>1000-fold) upon the addition of 1 equiv of match DNA and only slight enhancement with the addition of mismatch DNA. The polyamide-dye conjugates bound specific DNA sequences with high affinity (Ka > 10(8) M(-1)) and unwound the DNA duplex through intercalation (unwinding angle, phi, approximately 8 degrees). This new class of polyamides provides a method to specifically detect DNA sequences without denaturation.  相似文献   

16.
17.
Boc-protected benzimidazole-pyrrole, benzimidazole-imidazole, and benzimidazole-methoxypyrrole amino acids were synthesized and incorporated into DNA binding polyamides, comprised of N-methyl pyrrole and N-methyl imidazole amino acids, by means of solid-phase synthesis on an oxime resin. These hairpin polyamides were designed to determine the DNA recognition profile of a side-by-side benzimidazole/imidazole pair for the designated six base pair recognition sequence. Equilibrium association constants of the polyamide-DNA complexes were determined at two of the six base pair positions of the recognition sequence by quantitative DNase I footprinting titrations on DNA fragments each containing matched and single base pair mismatched binding sites. The results indicate that the benzimidazole-heterocycle building blocks can replace pyrrole-pyrrole, pyrrole-imidazole, and pyrrole-hydroxypyrrole constructs while retaining relative site specifities and subnanomolar match site affinities. The benzimidazole-containing hairpin polyamides represent a novel class of DNA binding ligands featuring tunable target recognition sequences combined with the favorable properties of the benzimidazole type DNA minor groove binders.  相似文献   

18.
Pyrrole–imidazole (PI) polyamides bind to the minor groove of the DNA duplex in a sequence‐specific manner and thus have the potential to regulate gene expression. To date, various types of PI polyamides have been designed as sequence‐specific DNA binding ligands. One of these, cysteine cyclic PI polyamides containing two β‐alanine molecules, were designed to recognize a 7 bp DNA sequence with high binding affinity. In this study, an efficient cyclization reaction between a cysteine and a chloroacetyl residue was used for dimerization in the synthesis of a unit that recognizes symmetrical DNA sequences. To evaluate specific DNA binding properties, dimeric PI polyamide binding was measured by using a surface plasmon resonance (SPR) method. Extending this molecular design, we synthesized a large dimeric PI polyamide that can recognize a 14 bp region in duplex DNA.  相似文献   

19.
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate noncovalent complexes formed between four novel polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im), and human telomeric DNA. Of the four polyamides investigated, PyPyPygammaImImImbetaDp (3) had the highest binding affinity towards the duplex d(TTAGGGTTAGGG/CCCTAACCCTAA) (D1). Results of competition analysis showed that the polyamides had binding affinities with D1 in the order PyPyPygammaImImImbetaDp (3)>PyPyPyPygammaPyImImPybetaDp (4)>PyPyPybetaImImImbetaDp (2)>ImImImbetaDp (1). MS/MS spectra confirmed that binding between D1 and the hairpin polyamides is more stable than that with the three-ring polyamides. By contrast, in the case of single-stranded d(TTAGGGTTAGGG)(D2), the binding order changes to ImImImbetaDp (1)>PyPyPygammaImImImbetaDp (3)>PyPyPybetaImImImbetaDp (2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号