首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical reductive dissolution of Li–Mn–O and Li–Fe–Mn–O spinels and Li+ extraction/insertion in these oxides were performed using voltammetry of microparticles. Both electrochemical reactions are sensitive to the Fe/(Fe+Mn) ratio, specific surface area, Li content in tetrahedral positions, and Mn valence, and can be used for electrochemical analysis of the homogeneity of the elemental and phase composition of synthetic samples. The peak potential (E P) of the reductive dissolution of the Li–Mn–O spinel is directly proportional to the logarithm of the specific surface area. E P of Li–Fe–Mn–O spinels is mainly controlled by the Fe/(Fe+Mn) ratio. Li+ insertion/extraction can be performed with Mn-rich Li–Fe–Mn–O spinels in aqueous solution under an ambient atmosphere and it is sensitive to the regularity of the spinel structure, in particularly to the amount of Li in tetrahedral positions and the Mn valence. Electronic Publication  相似文献   

2.
Fundamentally different behavior of Ba–Bi–O (Ba : Bi = 11 : 4, 1 : 1, 2: 3, and 1 : 5 mol/mol) and KnBamBim+nOy (m = n = 1, 2,...; exhibiting superconducting properties with Tc = 28–32 K) oxides and BaO2 in hydrolysis reactions has been revealed by means of potentiometry and chemical analysis. Products of the oxides treatment with water do not contain H2O2, evidencing the absence of peroxide ions in their structure. The perovskite-type barium-bismuth(III) oxides are completely hydrolyzed into Ba(OH)2 and Bi2O3 at room temperature.  相似文献   

3.
The ternary system La2O3–K2O–P2O5 has been examined by thermal, X-ray, IR and microscopic methods. The existence of three double potassium-lanthanum phosphates, K3La(PO4)2, KLa(PO3)4 and K2La(PO3)5 has been confirmed, and the phase diagram of the ternary system La2O3–K2O–P2O5 over the composition range LaPO4–K3PO4–P2O5 has been determined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The standard Gibbs energy of formation of tin tellurate, SnTe3O8(s) was determined from its vapour pressure measurements over the temperature range 973–1,158 K by employing thermogravimetry-based transpiration method. The temperature dependence of vapour pressure of TeO2 over the mixture SnTe3O8(s) + SnO2(s) generated by the incongruent vapourisation reaction, SnTe3O8(s) → SnO2(s) + 3 TeO2(g) could be represented as: log (p (TeO2, g)/Pa ± 0.03) = 13.943–14,181 (K/T) (973–1,158 K). The standard Gibbs energy of formation of SnTe3O8(s) was also determined by measuring the oxygen potential of SnO2(s)–Te(s)–SnTe3O8(s) phase mixture by the electromotive force method. Enthalpy increments of SnTe3O8(s) were determined by inverse drop calorimetric method in the temperature range 523–973 K. The thermodynamic functions, viz., heat capacity, entropy and free energy functions were derived from the measured values of enthalpy increments. A mean value of ?1,642 ± 2.0 kJ mol?1 was obtained for $ \Updelta_{\text{f}} H_{298}^{\circ } $ (SnTe3O8, s) by combining the value of Δf $ G^{\circ } $ (SnTe3O8, s) derived from vapour pressure data and the free energy functions derived from the drop calorimetric data.  相似文献   

5.
In iron–antimony catalysts containing excess antimony oxide and consisting of a mixture of FeSbO4 and -Sb2O4 phases, the structure of iron antimonate changes compared to the catalyst with an equimolar composition, which is the pure FeSbO4 phase. In the presence of excess antimony oxide in the near-surface layer of iron antimonate, extended defects with a structure of crystallographic shift are formed. These accumulate overstoichiometric antimony. Such a structural change is associated with changes in the acid–base properties and the surface oxygen binding strength.  相似文献   

6.
The glasses within composition as: (80 − x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25–35 nm and 30–46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ε′, activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh, β, decrease from 51.63 to 0.31 × 106 (s−1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.  相似文献   

7.
Thermal stability of PbO was studied. Reactivity of oxides in the systems PbO–M2O3 (M = In, Fe) was investigated up to 650 °C. Using the DTA and XRD methods, parts of investigated ternary oxide systems, labelled by compounds: V2O5, Pb8V2O13 and M2O3 (M = In, Fe), have been divided into partial ternary systems. IR spectra of compounds Pb2MV3O11 (M = In, Fe) have been compared.  相似文献   

8.
A phase equilibria diagram of the partial system NdPO4–K3PO4–KPO3 has been developed as part of the research aimed at determining the phase equilibrium relationships in the oxide system Nd2O3–K2O–P2O5. The investigations were conducted using thermoanalytical techniques, X-ray powder diffraction analysis and reflected-light microscopy. Three isopleths existing between: K3Nd(PO4)2–K4P2O7, NdPO4–K5P3O10 and NdPO4–K4P2O7 have been identified in the partial NdPO4–K3PO4–KPO3 system. Previously unknown potassium-neodymium phosphate “K4Nd2P4O15” has been discovered in the latter isopleth section. This phosphate exists in the solid phase up to a temperature of 890 °C at which it decomposes into the parent phosphates NdPO4 and K4P2O7. Four invariant points: two quasi-ternary eutectics, E1 (1057 °C) and E2 (580 °C) and two quasi-ternary peritectics, P1 (1078 °C) and P2 (610 °C), occur in the NdPO4–K3PO4–KPO3 region.  相似文献   

9.
The crystallization kinetics of Cs2O–Fe2O3–P2O5 glasses containing 12.5–27 mol% Cs2O were studied by using differential scanning calorimetry under nonisothermal conditions. Strong dependence of activation energy with temperature was observed, indicating the complex nature of the crystallization process. The various crystallization products were identified by X-ray diffraction technique. CsFeP2O7 was found to be the major crystalline phase in all cases. The overall activation energy obtained by classical model-free kinetic method was compared with that of isoconversional method; and from the results, the dependence of activation energy on extent of reaction and average temperature was delineated.  相似文献   

10.
Cooling a melt of a Bi–Sr–Ca–Cu–O system (Bi:Sr:Ca:Cu = 4:3:3:4 or 2:2:2:4) from 1000°C-1050°C yielded crystals of a new red-colored nonsuperconducting phase, accompanying the superconducting 2212 and 2201 phases. Based on the EPR spectra, it was concluded that copper is univalent in this compound. The new phase has a composition Bi2.2Sr1.6Ca1.3Cu2Ox. The X-ray diffraction pattern has been indexed, and the unit cell parameters of the phase have been determined: space group P2/m, a = 12.93, b = 4.55, c = 10.94 ; = 102.72°.  相似文献   

11.
《Vibrational Spectroscopy》2009,49(2):259-262
In order to evidence the structural changes induced by CuO and V2O5 in the phosphate glass network and their modifier or former role, x(CuO·V2O5)(100  x)[P2O5·CaO] glass system was prepared and investigated using Raman spectroscopy (0  x  40 mol%).Raman spectra of the studied glasses present the specific bands of the phosphate glasses at low concentration of transition metal (TM) ions, but at higher concentration (x > 7 mol%) a strong depolymerization of the phosphate network appears; non-bridging oxygen atoms are involved in VOP and CuOP bonds and new short units are formed. For a high concentration of V2O5 (x > 10 mol%) the Raman bands of V2O5 prevail in the spectra; this fact suggests that vanadium oxide imposes its structural units in the network acting thus as a network glass former.2D correlation analysis was also applied for the concentration-dependent Raman spectra in order to verify the assignments of the vibration modes and to find correlations in the changes induced by TM ions content. 2D correlation maps indicate a good correlation between the bands at ∼705 cm−1 assigned to POP stretching vibration and at ∼1175 cm−1 assigned to PO2 groups which suggest the depolymerization of the phosphate network. The correlation between the 1270 cm−1 and 930 cm−1 bands also suggests that V2O5 oxide is responsible for PO bonds breaking and POV formation.  相似文献   

12.
The work deals with the establishment of the dependence of the vibrational frequencies of strong O–H?O and N–H?O hydrogen bonds for the diagnosing the bonds themselves. To this end, the Raman spectra of a large number of different normal and deutero-substituted crystals characterized by the presence of strong O–H?O and N–H?O bonds are measured and the quantum chemical calculation is performed for one of these compounds. The dependence of the O–H stretching frequency on the O?O distance is constructed differing from that previously known for short O?O contacts. The mechanisms of significant broadening of the O–H vibration band in strong O–H?O hydrogen bonds are considered. Different dependences of the N–H vibrational frequencies in N–H?O bonds are reported and the causes of this diversity are discussed.  相似文献   

13.
The effect of mechanical activation on the structure and thermal reactions of glasses has been studied on the example of Na–Al–Fe phosphate glasses. These glasses are used in nuclear technology for immobilization of radioactive waste. The glasses were activated by grinding in a planetary mill. Mechanical activation causes a decrease of the T g temperature as well as of the glass crystallization temperature. The type of crystalline phases formed and the quantitative proportions between them are changing. Analysis of inter-atomic interactions in the structure of glass was applied to explain the observed regularities governing the crystallization of the activated glasses.  相似文献   

14.
Multicomponent glasses from the SiO2–P2O5–K2O–MgO–CaO–CuO system acting as slow release fertilizers were synthesized by the melt-quenching technique. The influence of CuO and P2O5 addition on the structure of glasses was evaluated by FTIR, Raman, 31P, and 29Si MAS NMR spectroscopies. The studies showed that the Cu2+ ions displacing Ca2+ ions and Mg2+ ions in the structure of glass prefer to associate with the phosphorus Q1 species, forming the Q0 species with chemically stable POCu bonds. This is accompanied by the reduction of the degree of polymerization of the phospho-oxygen sub-network, with a simultaneous increased degree of polymerization of the silico-oxygen sub-network of the silicate–phosphate glasses.  相似文献   

15.
Two complex lanthanide(III) transition metal(II) tellurium(IV) oxyhalides, Cu3Yb2(TeO3)4Cl4 and Cu3Yb3(TeO3)4Cl6 have been synthesized and the crystal structures were determined by single-crystal X-ray diffraction. Both compounds are layered with only weak connections in between the layers. The layers are made up of [YbO8], [TeO3] and [CuOxCly] polyhedra. In both compounds the strong Lewis acid cations Yb3+ and Te4+ only form bonds to oxygen while Cu2+ form bonds to both oxygen and chlorine. This leads the Cl? ions to be expelled from the bonding volumes of the crystal structures and protrude from the layers. Magnetic susceptibility measurements were performed on a powder sample of Cu3Yb2(TeO3)4Cl4. The Curie–Weiss law found at low temperatures indicates a Curie–Weiss temperature of ca. ?5(1) K. However, indication for long-range magnetic ordering could not be observed down to 1.87 K. The two new phases are to the best of our knowledge the first containing all three of Cu, Yb and Te.  相似文献   

16.
Russian Journal of Physical Chemistry A - Isothermal phase diagrams of ternary systems fullerenol-d–LaCl3–H2O and fullerenol-d–GdCl3–H2O at 25°C are studied via...  相似文献   

17.
18.
Formation of five-layered Ln2–εBa3+εFe5O15–δ phases [exhibiting nanoscale ordering with layer-by-layer location of the cations in the Ln–Ba–(Ln,Ba)–(Ln,Ba)–Ba–Ln perovskite-type structure] has occurred in the Ln–Ba–Fe–O (Ln = Y, Pr, Nd, Sm, Eu, and Gd) systems at 1100°С in air. Partial substitution of iron with cobalt (Ln2–εBa3+εFe5–yCoyO15–δ, Ln = Nd, Sm, Eu) has stabilized formation of the ordered structure. The oxygen content in the complex oxides has been determined in air over a wide temperature range by means of high-temperature thermogravimetry and iodometric titration. The change in oxygen content with temperature for the phases with five-layered ordering was significantly smaller than for the disordered phases.  相似文献   

19.
The thermal decomposition process of La2O3/MgO (La/Mg = 2, 1 and 0.5) supported nickel (15% mass/mass Ni) precursor was investigated. Thermal analysis results show distinct processes of decomposition of the samples in accordance with the composition. The mass loss at higher temperature is associated to distinct stages of decomposition of lanthanum precursors. The thermal analysis results agree with the FTIR spectra showing change in the band corresponding to carbonates and nitrates species. XRD results also confirmed the precursor’s decomposition. It can be concluded that the thermal decomposition of La2O3–MgO-nickel precursor depends on the La/Mg ratio and of the residual species.  相似文献   

20.
The Mg–Ce–O powder are shown to contain periclase-type MgO and/or fluoride-type cerium oxide (CeO2) depending upon the composition (x) defined by Ce/(Ce + Mg) atomic ratio. Lattice contraction of pariclase phase of MgO (average crystallite size ~8.8 nm) at Ce content of ‘x’ = 0.20 in comparison to pure MgO (crystallite size ~9.5 nm) has been realized due to oxygen vacancy formation. The optical band gap values of CeO2 varies (3.0–3.2 eV) due to oxygen vacancy formation in CeO2 phase, crystallite size and/or Ce3+/Ce4+ ratio. Further, the addition of Ce has shown to reduce the physisorption and chemisorption of water significantly as reflected by (1) suppression of related absorption peaks and (2) absence of magnesium hydroxide, Mg(OH)2, bands in Fourier transform infrared spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号