首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem to measure the phenomena of eigenvalue curve veering and mode localization is addressed in this paper. The second derivative of an eigenvalue and the first derivative of an eigenvector are taken as the measures, numerically showing curve veering and mode localization. Based on the measurement, close eigenvalues, as a key factor for the occurrence of the phenomena, are defined. Two eigenvalues are considered to be close, if their difference is small enough to cause the occurrence of the phenomena. The curve veering and mode localization can be noted by comparison of the derivatives with a critical value and hence the associated eigenvalues are close. Weakly coupled springs are given as an example.  相似文献   

2.
周春华 《计算物理》2000,17(4):372-380
发展了一种广义Stokes问题的无覆盖区域分裂解法。子域交界面上的约束条件是通过引入一Lagrange乘子而得到弱满足的,在有限元离散子域的交界处网格可以是非匹配的。应用Petrov Galerkin方法解每个子域上的广义Stokes问题,而交界面上的Lagrange乘子则通过共轭梯度法迭代求解,各变量均由线性函数离散。对上述区域分裂解法,还构造了基于求解当地问题的误差事后估算方法。各变量的当地误差估算器定义在二阶非连续鼓包(bump)函数的空间中。最后给出了基于事后误差估算值的自适应网格上的数值结果。  相似文献   

3.

The spectral properties of the adjacency matrix, in particular its largest eigenvalue and the associated principal eigenvector, dominate many structural and dynamical properties of complex networks. Here we focus on the localization properties of the principal eigenvector in real networks. We show that in most cases it is either localized on the star defined by the node with largest degree (hub) and its nearest neighbors, or on the densely connected subgraph defined by the maximum K-core in a K-core decomposition. The localization of the principal eigenvector is often strongly correlated with the value of the largest eigenvalue, which is given by the local eigenvalue of the corresponding localization subgraph, but different scenarios sometimes occur. We additionally show that simple targeted immunization strategies for epidemic spreading are extremely sensitive to the actual localization set.

  相似文献   

4.
The small oscillation modes in complex micromagnetic systems around an equilibrium are numerically evaluated in the frequency domain by using a novel formulation, which naturally preserves the main physical properties of the problem. The Landau–Lifshitz–Gilbert (LLG) equation, which describes magnetization dynamics, is linearized around a stable equilibrium configuration and the stability of micromagnetic equilibria is discussed. Special attention is paid to take into account the property of conservation of magnetization magnitude in the continuum as well as discrete model. The linear equation is recast in the frequency domain as a generalized eigenvalue problem for suitable self-adjoint operators connected to the micromagnetic effective field. This allows one to determine the normal oscillation modes and natural frequencies circumventing the difficulties arising in time-domain analysis. The generalized eigenvalue problem may be conveniently discretized by finite difference or finite element methods depending on the geometry of the magnetic system. The spectral properties of the eigenvalue problem are derived in the lossless limit. Perturbation analysis is developed in order to compute the changes in the natural frequencies and oscillation modes arising from the dissipative effects. It is shown that the discrete approximation of the eigenvalue problem obtained either by finite difference or finite element methods has a structure which preserves relevant properties of the continuum formulation. Finally, the generalized eigenvalue problem is solved for a rectangular magnetic thin-film by using the finite differences and for a linear chain of magnetic nanospheres by using the finite elements. The natural frequencies and the spatial distribution of the natural modes are numerically computed.  相似文献   

5.
In quantum information science, it is very important to solve the eigenvalue problem of the Gram matrix for quantum signals. This allows various quantities to be calculated, such as the error probability, mutual information, channel capacity, and the upper and lower bounds of the reliability function. Solving the eigenvalue problem also provides a matrix representation of quantum signals, which is useful for simulating quantum systems. In the case of symmetric signals, analytic solutions to the eigenvalue problem of the Gram matrix have been obtained, and efficient computations are possible. However, for asymmetric signals, there is no analytic solution and universal numerical algorithms that must be used, rendering the computations inefficient. Recently, we have shown that, for asymmetric signals such as amplitude-shift keying coherent-state signals, the Gram matrix eigenvalue problem can be simplified by exploiting its partial symmetry. In this paper, we clarify a method for simplifying the eigenvalue problem of the Gram matrix for quadrature amplitude modulation (QAM) signals, which are extremely important for applications in quantum communication and quantum ciphers. The results presented in this paper are applicable to ordinary QAM signals as well as modified QAM signals, which enhance the security of quantum cryptography.  相似文献   

6.
An efficient semi-analytic method is developed for computing the band structures of two-dimensional photonic crystals which are triangular lattices of circular cylinders. The problem is formulated as an eigenvalue problem for a given frequency using the Dirichlet-to-Neumann (DtN) map of a hexagon unit cell. This is a linear eigenvalue problem even if the material is dispersive, where the eigenvalue depends on the Bloch wave vector. The DtN map is constructed from a cylindrical wave expansion, without using sophisticated lattice sums techniques. The eigenvalue problem can be efficiently solved by standard linear algebra programs, since it involves only matrices of relatively small size.  相似文献   

7.
The title problem is solved in an approximate fashion using polynomial coordinate functions and Galerkin's method. The present approach is applicable when the mass is distributed over a rectangular subdomain in the case of a rectangular plate. For a circular plate the mass is applied over a concentric circular region.  相似文献   

8.
流动数值模拟中一种并行自适应有限元算法   总被引:1,自引:0,他引:1  
周春华 《计算物理》2006,23(4):412-418
给出了一种流动数值模拟中的基于误差估算的并行网格自适应有限元算法.首先,以初网格上获得的当地事后误差估算值为权,应用递归谱对剖分方法划分初网格,使各子域上总体误差近似相等,以解决负载平衡问题.然后以误差值为判据对各子域内网格进行独立的自适应处理.最后应用基于粘接元的区域分裂法在非匹配的网格上求解N-S方程.区域分裂情形下N-S方程有限元解的误差估算则是广义Stokes问题误差估算方法的推广.为验证方法的可靠性,给出了不可压流经典算例的数值结果.  相似文献   

9.
The eigenvalue distribution is investigated for matrix models related via the localization to Chern-Simons-matter theories. An integral representation of the planar resolvent is used to derive the positions of the branch points of the planar resolvent in the large ?t Hooft coupling limit. Various known exact results on eigenvalue distributions and the expectation value of Wilson loops are reproduced.  相似文献   

10.
One of the difficulties in analyzing eigenvalue problems that arise in connection with integrable systems is that they are frequently non-self-adjoint, making it difficult to determine where the spectrum lies. In this paper, we consider the problem of locating and counting the discrete eigenvalues associated with the Faddeev-Takhtajan eigenvalue problem, for which the sine-Gordon equation is the isospectral flow. In particular we show that for potentials having either zero topological charge or topological charge ± 1, and satisfying certain monotonicity conditions, the point spectrum lies on the unit circle and is simple. Furthermore, we give an exact count of the number of eigenvalues. This result is an analog of that of Klaus and Shaw for the Zakharov-Shabat eigenvalue problem. We also relate our results, as well as those of Klaus and Shaw, to the Krein stability theory for J-unitary matrices. In particular we show that the eigenvalue problem associated to the sine-Gordon equation has a J-unitary structure, and under the above conditions the point eigenvalues have a definite Krein signature, and are thus simple and lie on the unit circle.  相似文献   

11.
We consider the Dirichlet eigenvalue problem for the Laplace operator on a variable nonsmooth domain. We extend a result of Lupo and Micheletti concerning the structure of the set of domain perturbations which leave the multiplicity of an eigenvalue unchanged, and we study the set of perturbations which leave a certain eigenvalue unchanged.  相似文献   

12.
H. Dekker 《Physics letters. A》1985,112(5):197-200
Kramers' model for equilibrium via noise activated escape over a potential barrier is considered as an eigenvalue problem. Using Rayleigh's identity for the pertinent eigenvalue, the escape rate is obtained for a bistable system with a smooth parabolic barrier.  相似文献   

13.
The normal modes and their propagation numbers for acoustic propagation in wave guides with flow are the eigenvectors and eigenvalues of a boundary value problem for a non-standard Sturm-Liouville problem. It is non-standard because it depends non-linearly on the eigenvalue parameter. (In the classical problem for ducts with no flow, the problem depends linearly on the eigenvalue parameter.) In this paper a method is presented for the fast numerical solution of this problem. It is a generalization of a method that was developed for the classical problem. A finite difference method is employed that combines well known numerical techniques and a generalization of the Sturm sequence method to solve the resulting algebraic eigenvalue problem. Then a modified Richardson extrapolation method is used that dramatically increases the accuracy of the computed eigenvalues. The method is then applied to two problems. They correspond to acoustic propagation in the ocean in the presence of a current, and to acoustic propagation in shear layers over flat plates.  相似文献   

14.
We prove that the matrix of capacitance in electrostatics is a positive-singular matrix with a non-degenerate null eigenvalue. We explore the physical implications of this fact, and study the physical meaning of the eigenvalue problem for such a matrix. Many properties are easily visualized by constructing a “potential space” isomorphic to the euclidean space. The problem of minimizing the internal energy of a system of conductors under constraints is considered, and an equivalent capacitance for an arbitrary number of conductors is obtained. Moreover, some properties of systems of conductors in successive embedding are examined. Finally, we discuss some issues concerning the gauge invariance of the formulation.  相似文献   

15.
The expression of the localization factor in the two-dimensional periodic systems is derived based on the plane-wave expansion, transfer matrix and matrix eigenvalue methods. A comprehensive study is performed for the wave localization in the phononic crystal which is composed of steel cylinders embedded in epoxy matrix with the randomly disordered rod size. From the results, it can be observed that with the increase of the disorder degree, the localization phenomenon is strengthened. Furthermore, the filling fraction has significant effects on the wave localization characteristics.  相似文献   

16.
The Hamiltonian structure of stationary soliton equations associated with the AKNS eigenvalue problem is derived in two ways. First, it is shown to arise from the Kostant-Kirillov symplectic structure on a coadjoint orbit in an infinite-dimensional Lie algebra. Second, it is obtained as the restriction to a finite-dimensional manifold of the infinite-dimensional Hamiltonian structure associated with a certain eigenvalue problem polynomial in the eigenvalue parameter.  相似文献   

17.
在(相对论)电子结构方法中,四元数矩阵特征值问题和计算激发能的线性响应(Bethe-Salpeter)特征值问题是两个经常出现的结构特征值问题. 尽管前一个问题已被十分仔细地研究,后一个问题在一般形式下,即不假设电子Hessian正定性的复矩阵情况,并没有得到完全的理解. 鉴于它们非常相似的数学结构,本文从一个统一的角度研究了这两个问题,揭示了它们特征向量的“李群”结构,为将来设计对角化算法和数值优化方法提供了一个统一的框架. 利用和处理四元数矩阵特征值问题相同的归约算法,本文给出了表征线性响应问题特征值(实数、纯虚、或复数)的充分必要条件. 这一结果可以看作是实矩阵情况下已知条件的自然推广.  相似文献   

18.
In this paper, we consider the optimal design of photonic crystal structures for two-dimensional square lattices. The mathematical formulation of the bandgap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency bands. The optimized structures exhibit patterns which go far beyond typical physical intuition on periodic media design.  相似文献   

19.
Complex bands k(⊥)(E) in a semiconductor crystal, along a general direction n, can be computed by casting Schr?dinger's equation as a generalized polynomial eigenvalue problem. When working with primitive lattice vectors, the order of this eigenvalue problem can grow large for arbitrary n. It is, however, possible to always choose a set of non-primitive lattice vectors such that the eigenvalue problem is restricted to be quadratic. The complex bands so obtained need to be unfolded onto the primitive Brillouin zone. In this paper, we present a unified method to unfold real and complex bands. Our method ensures that the measure associated with the projections of the non-primary wavefunction onto all candidate primary wavefunctions is invariant with respect to the energy E.  相似文献   

20.
Abstract

In this paper we want to characterize nonlinear differential equations that describe processes allowing a localization operation in each subdomain of domain in which we consider the process. We formulate this localization condition by means of visual representations and give this operation a mathematical sense. Then we obtain a general form for such equation as well as put in it certain general physical contents, taking into account the fact that nonlinear operators from physically intelligent equations satisfy this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号