首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics and mechanism of proton-coupled electron transfer (PCET) from a series of phenols to a laser flash generated [Ru(bpy)(3)](3+) oxidant in aqueous solution was investigated. The reaction followed a concerted electron-proton transfer mechanism (CEP), both for the substituted phenols with an intramolecular hydrogen bond to a carboxylate group and for those where the proton was directly transferred to water. Without internal hydrogen bonds the concerted mechanism gave a characteristic pH-dependent rate for the phenol form that followed a Marcus free energy dependence, first reported for an intramolecular PCET in Sj?din, M. et al. J. Am. Chem. Soc. 2000, 122, 3932-3962 and now demonstrated also for a bimolecular oxidation of unsubstituted phenol. With internal hydrogen bonds instead, the rate was no longer pH-dependent, because the proton was transferred to the carboxylate base. The results suggest that while a concerted reaction has a relatively high reorganization energy (lambda), this may be significantly reduced by the hydrogen bonds, allowing for a lower barrier reaction path. It is further suggested that this is a general mechanism by which proton-coupled electron transfer in radical enzymes and model complexes may be promoted by hydrogen bonding. This is different from, and possibly in addition to, the generally suggested effect of hydrogen bonds on PCET in enhancing the proton vibrational wave function overlap between the reactant and donor states. In addition we demonstrate how the mechanism for phenol oxidation changes from a stepwise electron transfer-proton transfer with a stronger oxidant to a CEP with a weaker oxidant, for the same series of phenols. The hydrogen bonded CEP reaction may thus allow for a low energy barrier path that can operate efficiently at low driving forces, which is ideal for PCET reactions in biological systems.  相似文献   

2.
The coupling of electron and proton transfer is an important controlling factor in radical proteins, such as photosystem II, ribinucleotide reductase, cytochrome oxidases, and DNA photolyase. This was investigated in model complexes in which a tyrosine or tryptophan residue was oxidized by a laser-flash generated trisbipyridine-Ru(III) moiety in an intramolecular, proton-coupled electron transfer (PCET) reaction. The PCET was found to proceed in a competition between a stepwise reaction, in which electron transfer is followed by deprotonation of the amino acid radical (ETPT), and a concerted reaction, in which both the electron and proton are transferred in a single reaction step (CEP). Moreover, we found that we could analyze the kinetic data for PCET by Marcus' theory for electron transfer. By altering the solution pH, the strength of the Ru(III) oxidant, or the identity of the amino acid, we could induce a switch between the two mechanisms and obtain quantitative data for the parameters that control which one will dominate. The characteristic pH-dependence of the CEP rate (M. Sjodin et al. J. Am. Chem. Soc. 2000, 122, 3932) reflects the pH-dependence of the driving force caused by proton release to the bulk. For the pH-independent ETPT on the other hand, the driving force of the rate-determining ET step is pH-independent and smaller. On the other hand, temperature-dependent data showed that the reorganization energy was higher for CEP, while the pre-exponential factors showed no significant difference between the mechanisms. Thus, the opposing effect of the differences in driving force and reorganization energy determines which of the mechanisms will dominate. Our results show that a concerted mechanism is in general quite likely and provides a low-barrier reaction pathway for weakly exoergonic reactions. In addition, the kinetic isotope effect was much higher for CEP (kH/kD > 10) than for ETPT (kH/kD = 2), consistent with significant changes along the proton reaction coordinate in the rate-determining step of CEP.  相似文献   

3.
The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(?)H(+)) = 4.7 ? pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjo?din, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail.  相似文献   

4.
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sj?din et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-coupled electron transfer (PCET) at pH < 10 when the tyrosine is initially protonated and is single electron transfer (ET) for pH > 10 when the tyrosine is initially deprotonated. The PCET rate increases monotonically with pH, whereas the single ET rate is independent of pH and is 2 orders of magnitude faster than the PCET rate. The calculations reproduce these experimentally observed trends. The pH dependence for the PCET reaction arises from the decrease in the reaction free energies with pH. The calculations indicate that the larger rate for single ET arises from a combination of factors, including the smaller solvent reorganization energy for ET and the averaging of the coupling for PCET over the reactant and product hydrogen vibrational wave functions (i.e., a vibrational overlap factor in the PCET rate expression). The temperature dependence of the rates, the solvent reorganization energies, and the deuterium kinetic isotope effects determined from the calculations are also consistent with the experimental results.  相似文献   

5.
Theoretical studies of proton-coupled electron transfer (PCET) reactions for model systems provide insight into fundamental concepts relevant to bioenergetics. A dynamical theoretical formulation for vibronically nonadiabatic PCET reactions has been developed. This theory enables the calculation of rates and kinetic isotope effects, as well as the pH and temperature dependences, of PCET reactions. Methods for calculating the vibronic couplings for PCET systems have also been developed and implemented. These theoretical approaches have been applied to a wide range of PCET reactions, including tyrosyl radical generation in a tyrosine-bound rhenium polypyridyl complex, phenoxyl/phenol and benzyl/toluene self-exchange reactions, and hydrogen abstraction catalyzed by the enzyme lipoxygenase. These applications have elucidated some of the key underlying physical principles of PCET reactions. The tools and concepts derived from these theoretical studies provide the foundation for future theoretical studies of PCET in more complex bioenergetic systems such as Photosystem II.  相似文献   

6.
A comparative theoretical investigation of single electron transfer (ET), single proton transfer (PT), and proton-coupled electron transfer (PCET) reactions in iron bi-imidazoline complexes is presented. These calculations are motivated by experimental studies showing that the rates of ET and PCET are similar and are both slower than the rate of PT for these systems (Roth, J. P.; Lovel, S.; Mayer, J. M. J. Am. Chem. Soc. 2000, 122, 5486). The theoretical calculations are based on a multistate continuum theory, in which the solute is described by a multistate valence bond model, the transferring hydrogen nucleus is treated quantum mechanically, and the solvent is represented as a dielectric continuum. For electronically nonadiabatic electron transfer, the rate expressions for ET and PCET depend on the inner-sphere (solute) and outer-sphere (solvent) reorganization energies and on the electronic coupling, which is averaged over the reactant and product proton vibrational wave functions for PCET. The small overlap of the proton vibrational wave functions localized on opposite sides of the proton transfer interface decreases the coupling for PCET relative to ET. The theory accurately reproduces the experimentally measured rates and deuterium kinetic isotope effects for ET and PCET. The calculations indicate that the similarity of the rates for ET and PCET is due mainly to the compensation of the smaller outer-sphere solvent reorganization energy for PCET by the larger coupling for ET. The moderate kinetic isotope effect for PCET arises from the relatively short proton transfer distance. The PT reaction is found to be dominated by solute reorganization (with very small solvent reorganization energy) and to be electronically adiabatic, leading to a fundamentally different mechanism that accounts for the faster rate.  相似文献   

7.
In this article, progress in understanding proton coupled electron transfer (PCET) in Photosystem II is reviewed. Changes in acidity/basicity may accompany oxidation/reduction reactions in biological catalysis. Alterations in the proton transfer pathway can then be used to alter the rates of the electron transfer reactions. Studies of the bioenergetic complexes have played a central role in advancing our understanding of PCET. Because oxidation of the tyrosine results in deprotonation of the phenolic oxygen, redox active tyrosines are involved in PCET reactions in several enzymes. This review focuses on PCET involving the redox active tyrosines in Photosystem II. Photosystem II catalyzes the light-driven oxidation of water and reduction of plastoquinone. Photosystem II provides a paradigm for the study of redox active tyrosines, because this photosynthetic reaction center contains two tyrosines with different roles in catalysis. The tyrosines, YZ and YD, exhibit differences in kinetics and midpoint potentials, and these differences may be due to noncovalent interactions with the protein environment. Here, studies of YD and YZ and relevant model compounds are described.  相似文献   

8.
Proton-coupled electron transfer (PCET), a class of formal hydrogen atom transfer (HAT) reactions, is of widespread interest because it is implicated in a broad range of chemical and biochemical processes. PCET is typically differentiated from HAT by the fact that it occurs when a proton and electron are transferred between different sets of molecular orbitals. Previous theoretical work predicted that hydrogen bonding between reactants is a necessary but not sufficient condition for H exchanges to take place by PCET. This implies that HAT is the only mechanism for H exchange between two carbon atoms. In this work, we present computational results that show that the H exchange in the tert-butylperoxyl/phenol couple, a prototypical antioxidant exchange reaction, occurs by PCET and that the transfer of the electron can occur via an oxygen lone pair-ring pi overlap. We then show that the H exchange in a model for the tyrosyl/tyrosine couple, which is implicated in ribonucleotide reductase chemistry, occurs via PCET and that one path for the electron transfer is provided by a strong pi-stacking interaction. Finally, we show that a pi-stacking interaction in the benzyl/toluene couple, a system in which there is no H-bonding, can result in this exchange occurring via PCET to some extent. Collectively, these results indicate that PCET reactions are not unique to systems that can engage in H-bonding and that lone pair-pi and pi-pi interactions in these systems may be more important than previously understood.  相似文献   

9.
Recent advances in the theoretical treatment of proton-coupled electron transfer (PCET) reactions are reviewed. These reactions play an important role in a wide range of biological processes, as well as in fuel cells, solar cells, chemical sensors, and electrochemical devices. A unified theoretical framework has been developed to describe both sequential and concerted PCET, as well as hydrogen atom transfer (HAT). A quantitative diagnostic has been proposed to differentiate between HAT and PCET in terms of the degree of electronic nonadiabaticity, where HAT corresponds to electronically adiabatic proton transfer and PCET corresponds to electronically nonadiabatic proton transfer. In both cases, the overall reaction is typically vibronically nonadiabatic. A series of rate constant expressions have been derived in various limits by describing the PCET reactions in terms of nonadiabatic transitions between electron-proton vibronic states. These expressions account for the solvent response to both electron and proton transfer and the effects of the proton donor-acceptor vibrational motion. The solvent and protein environment can be represented by a dielectric continuum or described with explicit molecular dynamics. These theoretical treatments have been applied to numerous PCET reactions in solution and proteins. Expressions for heterogeneous rate constants and current densities for electrochemical PCET have also been derived and applied to model systems.  相似文献   

10.
The absolute rate constants, k(inh), and stoichiometric factors, n, of pyrroles, 2-methyl-3-ethylcarboxy-4,5-di-p-methoxyphenylpyrrole, 6, 2,3,4,5-tetraphenylpyrrole, 7, and 2,3,4,5-tetra-p-methoxyphenylpyrrole, 8, compared to the phenolic antioxidant, di-tert-butylhydroxyanisole, DBHA, during inhibited oxidation of cumene initiated by AIBN at 30 degrees C gave the relative antioxidant activities (k(inh)) DBHA > 8 > 7 > 6 and n = 2, whereas in styrene, 8 > DBHA. These results are explained by hydrogen atom transfer, HAT, from the N-H of pyrroles to ROO(*) radicals. The k(inh) values in styrene of dimethyl esters of the bile pigments of bilirubin ester (BRDE), of biliverdin ester (BVDE), and of a model compound (dipyrrinone, 1) gave k(inh) in the order pentamethylhydroxychroman (PMHC) > BRDE > 1 > BVDE. These antioxidant activities for BVDE and the model compound, 1, and PMHC dropped dramatically in the presence of methanol due to hydrogen bonding at the pyrrolic N-H group. In contrast the k(inh) of BRDE increased in methanol. We now show that pyrrolic compounds may react by HAT, proton-coupled electron transfer, PCET, or single electron transfer, SET, depending on their structure, the nature of the solvent, and the attacking radical. Compounds BVDE and 1 react by the HAT or PCET pathway (HAT/PCET) in styrene/chlorobenzene with ROO(*) and with the DPPH(*) radical in chlorobenzene according to N-H/N-D kH/kD of 1.6, whereas the DKIE with BRDE was only 1.2 with ROO(*). The antioxidant properties of polypyrroles of the BVDE class and model compounds (e.g., 1) are controlled by intramolecular H bonding which stabilizes an intermediate pyrrolic radical in HAT/PCET. According to kinetic polar solvent effects on the monopyrrole, 8, and BRDE, which gave increased rates in methanol, some pyrrolic structures are also susceptible to SET reactions. This conclusion is supported by some calculated ionization potentials. The antioxidant mechanism for BRDE with peroxyl radicals is described by the PCET reaction. Experiments using the 2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical (DBMP(*)) showed this to be a better radical to monitor HAT activities in stopped-flow kinetics compared to the use of the more popular DPPH(*) radical.  相似文献   

11.
Two-point hydrogen bonding between acid and base functionalities provides a convenient method for the modular assembly of proton-coupled electron transfer (PCET) networks, especially when that interface comprises an amidinium and two-point anionic partner; a system is presented that permits the proton configuration within the interface to be determined when pK(a) values of the conjugate acids are known.  相似文献   

12.
Proton coupled electron transfer (PCET) reactions play an essential role in many enzymatic processes. In PCET, redox-active tyrosines may be involved as intermediates when the oxidized phenolic side chain deprotonates. Photosystem II (PSII) is an excellent framework for studying PCET reactions, because it contains two redox-active tyrosines, YD and YZ, with different roles in catalysis. One of the redox-active tyrosines, YZ, is essential for oxygen evolution and is rapidly reduced by the manganese-catalytic site. In this report, we investigate the mechanism of YZ PCET in oxygen-evolving PSII. To isolate YZ(?) reactions, but retain the manganese-calcium cluster, low temperatures were used to block the oxidation of the metal cluster, high microwave powers were used to saturate the YD(?) EPR signal, and YZ(?) decay kinetics were measured with EPR spectroscopy. Analysis of the pH and solvent isotope dependence was performed. The rate of YZ(?) decay exhibited a significant solvent isotope effect, and the rate of recombination and the solvent isotope effect were pH independent from pH 5.0 to 7.5. These results are consistent with a rate-limiting, coupled proton electron transfer (CPET) reaction and are contrasted to results obtained for YD(?) decay kinetics at low pH. This effect may be mediated by an extensive hydrogen-bond network around YZ. These experiments imply that PCET reactions distinguish the two PSII redox-active tyrosines.  相似文献   

13.
A hydrogen‐bonded complex was successfully isolated as crystals from the anthranol/anthroxyl pair in the self‐exchange proton‐coupled electron transfer (PCET) reaction. The anthroxyl radical was stabilized by the introduction of a 9‐anthryl group at the carbon atom at the 10‐position. The hydrogen‐bonded complex with anthranol self‐assembled by π–π stacking to form a one‐dimensional chain in the crystal. The conformation around the hydrogen bond was similar to that of the theoretically predicted PCET activated complex of the phenol/phenoxyl pair. X‐ray crystal analyses revealed the self‐exchange of a hydrogen atom via the hydrogen bond, indicating the activation of the self‐exchange PCET reaction between anthranol and anthroxyl. Magnetic measurements revealed that magnetic ordering inside the one‐dimensional chain caused the inactivation of the self‐exchange reaction.  相似文献   

14.
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.  相似文献   

15.
Proton‐coupled electron transfer (PCET) reactions are essential for a wide range of natural energy‐conversion reactions and recently, the impact of PCET pathways has been exploited in artificial systems, too. The Minireview highlights PCET reactions catalysed by first‐row transition‐metal complexes, with a focus on the water oxidation, the oxygen reduction, the hydrogen evolution, and the CO2 reduction reaction. Special attention will be paid to systems in which the impact of such pathways is deduced by comparison to systems with “electron‐only”‐transfer pathways.  相似文献   

16.
Aromatic amino acids such as l -tyrosine and l -tryptophan are deployed in natural systems to mediate electron transfer (ET) reactions. While tyrosine oxidation is always coupled to deprotonation (proton-coupled electron-transfer, PCET), both ET-only and PCET pathways can occur in the case of the tryptophan residue. In the present work, two novel conjugates 1 and 2 , based on a SnIV tetraphenylporphyrin and SnIV octaethylporphyrin, respectively, as the chromophore/electron acceptor and l -tryptophan as electron/proton donor, have been prepared and thoroughly characterized by a combination of different techniques including single crystal X-ray analysis. The photophysical investigation of 1 and 2 in CH2Cl2 in the presence of pyrrolidine as a base shows that different quenching mechanisms are operating upon visible-light excitation of the porphyrin component, namely photoinduced electron transfer and concerted proton electron transfer (CPET), depending on the chromophore identity and spin multiplicity of the excited state. The results are compared with those previously described for metal-mediated analogues featuring SnIV porphyrin chromophores and l -tyrosine as the redox active amino acid and well illustrate the peculiar role of l -tryptophan with respect to PCET.  相似文献   

17.
Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(?)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(?)) results in the formation of FADH(-) and (306)Trp(?). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(?). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.  相似文献   

18.
Degenerate hydrogen atom exchange reactions have been studied using calculations, based on density functional theory (DFT), for (i) benzyl radical plus toluene, (ii) phenoxyl radical plus phenol, and (iii) methoxyl radical plus methanol. The first and third reactions occur via hydrogen atom transfer (HAT) mechanisms. The transition structure (TS) for benzyl/toluene hydrogen exchange has C(2)(h)() symmetry and corresponds to the approach of the 2p-pi orbital on the benzylic carbon of the radical to a benzylic hydrogen of toluene. In this TS, and in the similar C(2) TS for methoxyl/methanol hydrogen exchange, the SOMO has significant density in atomic orbitals that lie along the C-H vectors in the former reaction and nearly along the O-H vectors in the latter. In contrast, the SOMO at the phenoxyl/phenol TS is a pi symmetry orbital within each of the C(6)H(5)O units, involving 2p atomic orbitals on the oxygen atoms that are essentially orthogonal to the O.H.O vector. The transferring hydrogen in this reaction is a proton that is part of a typical hydrogen bond, involving a sigma lone pair on the oxygen of the phenoxyl radical and the O-H bond of phenol. Because the proton is transferred between oxygen sigma orbitals, and the electron is transferred between oxygen pi orbitals, this reaction should be described as a proton-coupled electron transfer (PCET). The PCET mechanism requires the formation of a hydrogen bond, and so is not available for benzyl/toluene exchange. The preference for phenoxyl/phenol to occur by PCET while methoxyl/methanol exchange occurs by HAT is traced to the greater pi donating ability of phenyl over methyl. This results in greater electron density on the oxygens in the PCET transition structure for phenoxyl/phenol, as compared to the PCET hilltop for methoxyl/methanol, and the greater electron density on the oxygens selectively stabilizes the phenoxyl/phenol TS by providing a larger binding energy of the transferring proton.  相似文献   

19.
Photoinduced electron transfer in two molecular triads comprised of a triarylamine donor, a d(6) metal diimine photosensitizer, and a 9,10-anthraquinone acceptor was investigated with particular focus on the influence of hydrogen-bonding solvents on the electron transfer kinetics. Photoexcitation of the ruthenium(II) and osmium(II) sensitizers of these triads leads to charge-separated states containing an oxidized triarylamine unit and a reduced anthraquinone moiety. The kinetics for formation of these charge-separated states were explored by using femtosecond transient absorption spectroscopy. Strong hydrogen bond donors such as hexafluoroisopropanol or trifluoroethanol cause a thermodynamic and kinetic stabilization of these charge-separated states that is attributed to hydrogen bonding between alcoholic solvent and reduced anthraquinone. In the ruthenium triad this effect leads to a lengthening of the lifetime of the charge-separated state from ~750 ns in dichloromethane to ~3000 ns in hexafluoroisopropanol while in the osmium triad the respective lifetime increases from ~50 to ~2000 ns between the same two solvents. In both triads the lifetime of the charge-separated state correlates with the hydrogen bond donor strength of the solvent but not with the solvent dielectric constant. These findings are relevant in the greater context of solar energy conversion in which one is interested in storing light energy in charge-separated states that are as long-lived as possible. Furthermore they are relevant for understanding proton-coupled electron transfer (PCET) reactivity of electronically excited states at a fundamental level because changes in hydrogen-bonding strength accompanying changes in redox states may be regarded as an attenuated form of PCET.  相似文献   

20.
DFT calculations have been performed with the B3LYP and MPW1K functional on the hydrogen atom abstraction reactions of ethenoxyl with ethenol and of phenoxyl with both phenol and alpha-naphthol. Comparison with the results of G3 calculations shows that B3LYP seriously underestimates the barrier heights for the reaction of ethenoxyl with ethenol by both proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms. The MPW1K functional also underestimates the barrier heights, but by much less than B3LYP. Similarly, comparison with the results of experiments on the reaction of phenoxyl radical with alpha-naphthol indicates that the barrier height for the preferred PCET mechanism is calculated more accurately by MPW1K than by B3LYP. These findings indicate that the MPW1K functional is much better suited than B3LYP for calculations on hydrogen abstraction reactions by both HAT and PCET mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号