首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the edge clique cover number of squares of graphs. More specifically, we study the inequality θ(G2)θ(G) where θ(G) is the edge clique cover number of a graph G. We show that any graph G with at most θ(G) vertices satisfies the inequality. Among the graphs with more than θ(G) vertices, we find some graphs violating the inequality and show that dually chordal graphs and power-chordal graphs satisfy the inequality. Especially, we give an exact formula computing θ(T2) for a tree T.  相似文献   

2.
Let G be a graph and let Pm(G) denote the number of perfect matchings of G.We denote the path with m vertices by Pm and the Cartesian product of graphs G and H by G×H. In this paper, as the continuance of our paper [W. Yan, F. Zhang, Enumeration of perfect matchings of graphs with reflective symmetry by Pfaffians, Adv. Appl. Math. 32 (2004) 175-188], we enumerate perfect matchings in a type of Cartesian products of graphs by the Pfaffian method, which was discovered by Kasteleyn. Here are some of our results:1. Let T be a tree and let Cn denote the cycle with n vertices. Then Pm(C4×T)=∏(2+α2), where the product ranges over all eigenvalues α of T. Moreover, we prove that Pm(C4×T) is always a square or double a square.2. Let T be a tree. Then Pm(P4×T)=∏(1+3α2+α4), where the product ranges over all non-negative eigenvalues α of T.3. Let T be a tree with a perfect matching. Then Pm(P3×T)=∏(2+α2), where the product ranges over all positive eigenvalues α of T. Moreover, we prove that Pm(C4×T)=[Pm(P3×T)]2.  相似文献   

3.
Given a graph G and a subgraph H of G, let rb(G,H) be the minimum number r for which any edge-coloring of G with r colors has a rainbow subgraph H. The number rb(G,H) is called the rainbow number of H with respect to G. Denote as mK2 a matching of size m and as Bn,k the set of all the k-regular bipartite graphs with bipartition (X,Y) such that X=Y=n and kn. Let k,m,n be given positive integers, where k≥3, m≥2 and n>3(m−1). We show that for every GBn,k, rb(G,mK2)=k(m−2)+2. We also determine the rainbow numbers of matchings in paths and cycles.  相似文献   

4.
Let G be a connected plane graph, D(G) be the corresponding link diagram via medial construction, and μ(D(G)) be the number of components of the link diagram D(G). In this paper, we first provide an elementary proof that μ(D(G))≤n(G)+1, where n(G) is the nullity of G. Then we lay emphasis on the extremal graphs, i.e. the graphs with μ(D(G))=n(G)+1. An algorithm is given firstly to judge whether a graph is extremal or not, then we prove that all extremal graphs can be obtained from K1 by applying two graph operations repeatedly. We also present a dual characterization of extremal graphs and finally we provide a simple criterion on structures of bridgeless extremal graphs.  相似文献   

5.
It is shown that in a 0-sum Boolean weighted graph G the sum of the weights taken over all the spanning trees equals the sum of the weights taken over all the perfect matchings in the graph Gv, where v is any vertex of G. Several related theorems are proved which include parity results on perfect matchings and spanning trees in Eulerian graphs. The ideas on perfect matchings in 0-sum Boolean weighted graphs are generalized to matchings in any Boolean weighted graph.  相似文献   

6.
The average distance μ(G) of a connected graph G of order n is the average of the distances between all pairs of vertices of G, i.e., μ(G) = ()−1 Σ{x,y}⊂V(G) dG(x, y), where V(G) denotes the vertex set of G and dG(x, y) is the distance between x and y. We prove that every connected graph of order n and minimum degree δ has a spanning tree T with average distance at most . We give improved bounds for K3‐free graphs, C4‐free graphs, and for graphs of given girth. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 1–13, 2000  相似文献   

7.
Continuity in G     
For a discrete group G, we consider βG, the Stone– ech compactification of G, as a right topological semigroup, and G*GG as a subsemigroup of βG. We study the mappings λp* :G*G*and μ* :G*G*, the restrictions to G* of the mappings λpG→βG and μ :βG→βG, defined by the rules λp(q)=pq, μ(q)=qq. Under some assumptions, we prove that the continuity of λp* or μ* at some point of G* implies the existence of a P-point in ω*.  相似文献   

8.
Let G be an undirected graph and ={X1, …, Xn} be a partition of V(G). Denote by G/ the graph which has vertex set {X1, …, Xn}, edge set E, and is obtained from G by identifying vertices in each class Xi of the partition . Given a conservative graph (Gw), we study vertex set partitions preserving conservativeness, i.e., those for which (G/ , w) is also a conservative graph. We characterize the conservative graphs (G/ , w), where is a terminal partition of V(G) (a partition preserving conservativeness which is not a refinement of any other partition of this kind). We prove that many conservative graphs admit terminal partitions with some additional properties. The results obtained are then used in new unified short proofs for a co-NP characterization of Seymour graphs by A. A. Ageev, A. V. Kostochka, and Z. Szigeti (1997, J. Graph Theory34, 357–364), a theorem of E. Korach and M. Penn (1992, Math. Programming55, 183–191), a theorem of E. Korach (1994, J. Combin. Theory Ser. B62, 1–10), and a theorem of A. V. Kostochka (1994, in “Discrete Analysis and Operations Research. Mathematics and its Applications (A. D. Korshunov, Ed.), Vol. 355, pp. 109–123, Kluwer Academic, Dordrecht).  相似文献   

9.
We say that two graphs G and H with the same vertex set commute if their adjacency matrices commute. In this article, we show that for any natural number r, the complete multigraph K is decomposable into commuting perfect matchings if and only if n is a 2‐power. Also, it is shown that the complete graph Kn is decomposable into commuting Hamilton cycles if and only if n is a prime number. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

10.
Using a combinatorial approach that avoids geometry, this paper studies the structure of KT(G/B), the T-equivariant K-theory of the generalized flag variety G/B. This ring has a natural basis (the double Grothendieck polynomials), where is the structure sheaf of the Schubert variety Xw. For rank two cases we compute the corresponding structure constants of the ring KT(G/B) and, based on this data, make a positivity conjecture for general G which generalizes the theorems of M. Brion (for K(G/B)) and W. Graham (for HT*(G/B)). Let [Xλ]KT(G/B) be the class of the homogeneous line bundle on G/B corresponding to the character of T indexed by λ. For general G we prove “Pieri–Chevalley formulas” for the products , , , and , where λ is dominant. By using the Chern character and comparing lowest degree terms the products which are computed in this paper also give results for the Grothendieck polynomials, double Schubert polynomials, and ordinary Schubert polynomials in, respectively K(G/B), HT*(G/B) and H*(G/B).  相似文献   

11.
For a discrete group G, we prove that a G-map between proper GCW-complexes induces an isomorphism in G-equivariant K-homology if it induces an isomorphism in C-equivariant K-homology for every finite cyclic subgroup C of G. As an application, we show that the source of the Baum–Connes assembly map, namely K * G (E(G, in)), is isomorphic to K * G (E(G, )), where E(G, ) denotes the classifying space for the family of finite cyclic subgroups of G. Letting be the family of virtually cyclic subgroups of G, we also establish that and related results.  相似文献   

12.
It is conjectured that χas(G) = χt(G) for every k-regular graph G with no C5 component (k 2). This conjecture is shown to be true for many classes of graphs, including: graphs of type 1; 2-regular, 3-regular and (|V (G)| - 2)-regular graphs; bipartite graphs; balanced complete multipartite graphs; k-cubes; and joins of two matchings or cycles.  相似文献   

13.
We consider k-th power of upper bound graphs. According to the characterization of upper bound graphs, we obtain a characterization of k-th power of upper bound graphs. That is, for a connected upper bound graph G, Gk is an upper bound graph if and only if for any pair of Ak -simplicial vertices s1, s2 such that , there exists a Gk -simplicial vertex s satisfying the conditions: and . Furthermore we also get some properties on squares of upper bound graphs.AMS Subject Classification: 05C62.  相似文献   

14.
The bounded edge-connectivity λk(G) of a connected graph G with respect to is the minimum number of edges in G whose deletion from G results in a subgraph with diameter larger than k and the edge-persistence D+(G) is defined as λd(G)(G), where d(G) is the diameter of G. This paper considers the Cartesian product G1×G2, shows λk1+k2(G1×G2)≥λk1(G1)+λk2(G2) for k1≥2 and k2≥2, and determines the exact values of D+(G) for G=Cn×Pm, Cn×Cm, Qn×Pm and Qn×Cm.  相似文献   

15.
Let be the additive group of 1×n row vectors over . For an n×n matrix T over  and , the affine transformation FT,ω of sends x to xT+ω. Let α be the cyclic group generated by a vector . The affine transformation coset pseudo-digraph has the set of cosets of α in as vertices and there are c arcs from x+α to y+α if and only if the number of zx+α such that FT,ω(z)y+α is c. We prove that the following statements are equivalent: (a)  is isomorphic to the d-nary (n−1)-dimensional De Bruijn digraph; (b) α is a cyclic vector for T; (c)  is primitive. This strengthens a result conjectured by C.M. Fiduccia and E.M. Jacobson [Universal multistage networks via linear permutations, in: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, ACM Press, New York, 1991, pp. 380–389]. Under the further assumption that T is invertible we show that each component of is a conjunction of a cycle and a De Bruijn digraph, namely a generalized wrapped butterfly. Finally, we discuss the affine TCP digraph representations for a class of digraphs introduced by D. Coudert, A. Ferreira and S. Perennes [Isomorphisms of the De Bruijn digraph and free-space optical networks, Networks 40 (2002) 155–164].  相似文献   

16.
Let D be a set of positive integers. The distance graph G(Z,D) with distance set D is the graph with vertex set Z in which two vertices x,y are adjacent if and only if |xy|D. The fractional chromatic number, the chromatic number, and the circular chromatic number of G(Z,D) for various D have been extensively studied recently. In this paper, we investigate the fractional chromatic number, the chromatic number, and the circular chromatic number of the distance graphs with the distance sets of the form Dm,[k,k]={1,2,…,m}−{k,k+1,…,k}, where m, k, and k are natural numbers with mkk. In particular, we completely determine the chromatic number of G(Z,Dm,[2,k]) for arbitrary m, and k.  相似文献   

17.
We introduce a new class of graphs which we call P 3-dominated graphs. This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs. Let G be a 2-connected P 3-dominated graph. We prove that G is hamiltonian if α(G 2) ≤ κ(G), with two exceptions: K 2,3 and K 1,1,3. We also prove that G is hamiltonian, if G is 3-connected and |V(G)| ≤ 5δ(G) − 5. These results extend known results on (quasi-)claw-free graphs. This paper was completed when both authors visited the Center for Combinatorics, Nankai University, Tianjin. They gratefully acknowledge the hospitality and support of the Center for Combinatorics and Nankai University. The work of E.Vumar is sponsored by SRF for ROCS, REM.  相似文献   

18.
The signed total domination number of a graph is a certain variant of the domination number. If is a vertex of a graph G, then N() is its oper neighbourhood, i.e. the set of all vertices adjacent to in G. A mapping f: V(G)-1, 1, where V(G) is the vertex set of G, is called a signed total dominating function (STDF) on G, if for each V(G). The minimum of values , taken over all STDF's of G, is called the signed total domination number of G and denoted by st(G). A theorem stating lower bounds for st(G) is stated for the case of regular graphs. The values of this number are found for complete graphs, circuits, complete bipartite graphs and graphs on n-side prisms. At the end it is proved that st(G) is not bounded from below in general.  相似文献   

19.
Let G be a domain bounded by a Jordan curve Γ, and let A(G) be the Banach space of functions continuous on G and holomorphic in G. The Faber operator T is a linear mapping from A( ) to A(G) mapping wn onto the nth Faber polynomial Fn(z) (n=0, 1, 2, …). We show that T<∞ if Γ is piecewise Dini-smooth, and give an example of a quasicircle Γ for which T=∞.  相似文献   

20.
The forcing number or the degree of freedom of a perfect matching M of a graph G is the cardinality of the smallest subset of M that is contained in no other perfect matchings of G. In this paper we show that the forcing numbers of perfect matchings in a fullerene graph are not less than 3 by applying the 2-extendability and cyclic edge-connectivity 5 of fullerene graphs obtained recently, and Kotzig’s classical result about unique perfect matching as well. This lower bound can be achieved by infinitely many fullerene graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号