首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper deals with the use of the discontinuous Galerkin finite element method (DGFEM) for the numerical solution of viscous compressible flows. We start with a scalar convection–diffusion equation and present a discretization with the aid of the non‐symmetric variant of DGFEM with interior and boundary penalty terms. We also mention some theoretical results. Then we extend the scheme to the system of the Navier–Stokes equations and discuss the treatment of stabilization terms. Several numerical examples are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we focus on the applicability of spectral‐type collocation discontinuous Galerkin methods to the steady state numerical solution of the inviscid and viscous Navier–Stokes equations on meshes consisting of curved quadrilateral elements. The solution is approximated with piecewise Lagrange polynomials based on both Legendre–Gauss and Legendre–Gauss–Lobatto interpolation nodes. For the sake of computational efficiency, the interpolation nodes can be used also as quadrature points. In this case, however, the effect of the nonlinearities in the equations and/or curved elements leads to aliasing and/or commutation errors that may result in inaccurate or unstable computations. By a thorough numerical testing on a set of well known test cases available in the literature, it is here shown that the two sets of nodes behave very differently, with a clear advantage of the Legendre–Gauss nodes, which always displayed an accurate and robust behaviour in all the test cases considered.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Discontinuous Galerkin (DG) methods are very well suited for the construction of very high‐order approximations of the Euler and Navier–Stokes equations on unstructured and possibly nonconforming grids, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods, a high‐order spectral element DG approximation of the Navier–Stokes equations coupled with a p‐multigrid solution strategy based on a semi‐implicit Runge–Kutta smoother is considered here. The effectiveness of the proposed approach in the solution of compressible shockless flow problems is demonstrated on 2D inviscid and viscous test cases by comparison with both a p‐multigrid scheme with non‐spectral elements and a spectral element DG approach with an implicit time integration scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A new finite difference method for the discretization of the incompressible Navier–Stokes equations is presented. The scheme is constructed on a staggered‐mesh grid system. The convection terms are discretized with a fifth‐order‐accurate upwind compact difference approximation, the viscous terms are discretized with a sixth‐order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth‐order difference approximation on a cell‐centered mesh. Time advancement uses a three‐stage Runge–Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The Chimera method was developed three decades ago as a meshing simplification tool. Different components are meshed independently and then glued together using a domain decomposition technique to couple the equations solved on each component. This coupling is achieved via transmission conditions (in the finite element context) or by imposing the continuity of fluxes (in the finite volume context). Historically, the method has then been used extensively to treat moving objects, as the independent meshes are free to move with respect to the others. At each time step, the main task consists in recomputing the interpolation of the transmission conditions or fluxes. This paper presents a Chimera method applied to the Navier–Stokes equations. After an introduction on the Chimera method, we describe in two different sections the two independent steps of the method: the hole cutting to create the interfaces of the subdomains and the coupling of the subdomains. Then, we present the Navier–Stokes solver considered in this work. Implementation aspects are then detailed in order to apply efficiently the method to this specific parallel Navier–Stokes solver. We conclude with some examples to demonstrate the reliability and application of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Two Cartesian grid stretching functions are investigated for solving the unsteady incompressible Navier–Stokes equations using the pressure–velocity formulation. The first function is developed for the Fourier method and is a generalization of earlier work. This function concentrates more points at the centre of the computational box while allowing the box to remain finite. The second stretching function is for the second‐order central finite difference scheme, which uses a staggered grid in the computational domain. This function is derived to allow a direct discretization of the Laplacian operator in the pressure equation while preserving the consistent behaviour exhibited by the uniform grid scheme. Both functions are analysed for their effects on the matrix of the discretized pressure equation. It is shown that while the second function does not spoil the matrix diagonal dominance, the first one can. Limits to stretching of the first method are derived for the cases of mappings in one and two directions. A limit is also derived for the second function in order to prevent a strong distortion of a sine wave. The performances of the two types of stretching are examined in simulations of periodic co‐flowing jets and a time developing boundary layer. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in general co‐ordinates. Domain decomposition techniques are needed for solving flow problems in complicated geometries while retaining structured grids on each of the subdomains. This is the so‐called block‐structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure‐correction technique is used to solve the momentum equations together with incompressibility conditions. Schwarz domain decomposition is used to solve the momentum and pressure equations on the composite domain. Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computations are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

9.
An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
11.
This paper is concerned with the numerical resolution of the incompressible Navier–Stokes equations in the velocity–vorticity form on non-orthogonal structured grids. The discretization is performed in such a way, that the discrete operators mimic the properties of the continuous ones. This allows the discrete equivalence between the primitive and velocity–vorticity formulations to be proved. This last formulation can thus be seen as a particular technique for solving the primitive equations. The difficulty associated with non-simply connected computational domains and with the implementation of the boundary conditions are discussed. One of the main drawback of the velocity–vorticity formulation, relative to the additional computational work required for solving the additional unknowns, is alleviated. Two- and three-dimensional numerical test cases validate the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
A space and time third‐order discontinuous Galerkin method based on a Hermite weighted essentially non‐oscillatory reconstruction is presented for the unsteady compressible Euler and Navier–Stokes equations. At each time step, a lower‐upper symmetric Gauss–Seidel preconditioned generalized minimal residual solver is used to solve the systems of linear equations arising from an explicit first stage, single diagonal coefficient, diagonally implicit Runge–Kutta time integration scheme. The performance of the developed method is assessed through a variety of unsteady flow problems. Numerical results indicate that this method is able to deliver the designed third‐order accuracy of convergence in both space and time, while requiring remarkably less storage than the standard third‐order discontinous Galerkin methods, and less computing time than the lower‐order discontinous Galerkin methods to achieve the same level of temporal accuracy for computing unsteady flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A class of lower–upper/approximate factorization (LUAF) implicit weighted essentially non‐oscillatory (ENO; WENO) schemes for solving the two‐dimensional incompressible Navier–Stokes equations in a generalized co‐ordinate system is presented. The algorithm is based on the artificial compressibility formulation, and symmetric Gauss–Seidel relaxation is used for computing steady state solutions while symmetric successive overrelaxation is used for treating time‐dependent flows. WENO spatial operators are employed for inviscid fluxes and central differencing for viscous fluxes. Internal and external viscous flow test problems are presented to verify the numerical schemes. The use of a WENO spatial operator not only enhances the accuracy of solutions but also improves the convergence rate for the steady state computation as compared with using the ENO counterpart. It is found that the present solutions compare well with exact solutions, experimental data and other numerical results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
A discretization method is presented for the full, steady, compressible Navier–Stokes equations. The method makes use of quadrilateral finite volumes and consists of an upwind discretization of the convective part and a central discretization of the diffusive part. In the present paper the emphasis lies on the discretization of the convective part. The solution method applied solves the steady equations directly by means of a non-linear relaxation method accelerated by multigrid. The solution method requires the discretization to be continuously differentiable. For two upwind schemes which satisfy this requirement (Osher's and van Leer's scheme), results of a quantitative error analysis are presented. Osher's scheme appears to be increasingly more accurate than van Leer's scheme with increasing Reynolds number. A suitable higher-order accurate discretization of the convection terms is derived. On the basis of this higher-order scheme, to preserve monotonicity, a new limiter is constructed. Numerical results are presented for a subsonic flat plate flow and a supersonic flat plate flow with oblique shock wave–boundary layer interaction. The results obtained agree with the predictions made. Useful properties of the discretization method are that it allows an easy check of false diffusion and that it needs no tuning of parameters.  相似文献   

15.
We present a numerical scheme to solve the incompressible Navier–Stokes equations with open boundary condition. After replacing the incompressibility constraint by the pressure Poisson equation, the key is how to give an appropriate boundary condition for the pressure Poisson equation. We propose a new boundary condition for the pressure on the open boundary. Some numerical experiments are presented to verify the accuracy and stability of scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A simple error analysis is used within the context of segregated finite element solution scheme to solve incompressible fluid flow. An error indicator is defined based on the difference between a numerical solution on an original mesh and an approximated solution on a related mesh. This error indicator is based on satisfying the steady‐state momentum equations. The advantages of this error indicator are, simplicity of implementation (post‐processing step), ability to show regions of high and/or low error, and as the indicator approaches zero the solution approaches convergence. Two examples are chosen for solution; first, the lid‐driven cavity problem, followed by the solution of flow over a backward facing step. The solutions are compared to previously published data for validation purposes. It is shown that this rather simple error estimate, when used as a re‐meshing guide, can be very effective in obtaining accurate numerical solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A complete boundary integral formulation for incompressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for the lift and the drag hysteresis associated with a NACA0012 aerofoil oscillating in pitch show good agreement with available experimental data. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
An algorithm for the solutions of the two-dimensional incompressible Navier–Stokes equations is presented. The algorithm can be used to compute both steady-state and time-dependent flow problems. It is based on an artificial compressibility method and uses higher-order upwind finite-volume techniques for the convective terms and a second-order finite-volume technique for the viscous terms. Three upwind schemes for discretizing convective terms are proposed here. An interesting result is that the solutions computed by one of them is not sensitive to the value of the artificial compressibility parameter. A second-order, two-step Runge–Kutta integration coupling with an implicit residual smoothing and with a multigrid method is used for achieving fast convergence for both steady- and unsteady-state problems. The numerical results agree well with experimental and other numerical data. A comparison with an analytically exact solution is performed to verify the space and time accuracy of the algorithm.  相似文献   

19.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A new numerical method is developed to efficiently solve the unsteady incompressible Navier–Stokes equations with second-order accuracy in time and space. In contrast to the SIMPLE algorithms, the present formulation directly solves the discrete x- and y-momentum equations in a coupled form. It is found that the present implicit formulation retrieves some cross convection terms overlooked by the conventional iterative methods, which contribute to accuracy and fast convergence. The finite volume method is applied on the fully staggered grid to solve the vector-form momentum equations. The preconditioned conjugate gradient squared method (PCGS) has proved very efficient in solving the associate linearized large, sparse block-matrix system. Comparison with the SIMPLE algorithm has indicated that the present momentum coupling method is fast and robust in solving unsteady as well as steady viscous flow problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号