首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)22‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)23‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses.  相似文献   

2.
The reaction of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , with EtOCS2K and C4H8NCS2NH4 in dichloromethane at room temperature yielded the seven coordinated ethyldithiocarbonate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2COEt)(η2‐SCNMe2)(PPh3)] 2 , and the dithiocarbamate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2CNC4H8)(η2‐SCNMe2)(PPh3)] 3 . The geometry around the metal atom of compounds 2 and 3 are capped octahedrons as revealed by X‐ray diffraction analyses. The thiocarbamoyl and ethyldithiocarbonate or pyrrolidinyldithiocarbamate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, respectively. Structure parameters, NMR, IR and Mass spectra are in agreement with the crystal chemistry of the two compounds.  相似文献   

3.
The η1‐thiocarbamoyl palladium complexes [Pd(PPh3)(η1‐SCNMe2)(η2‐S2R)] (R = P(OEt)2, 2 ; CNEt2, 3 ) and trans‐[Pd(PPh3)21‐SCNMe2)(η1‐Spy)], 4 , (pyS: pyridine‐2‐thionate) are prepared by reacting the η2‐thiocarbamoyl palladium complex [Pd(PPh3)22‐SCNMe2)][PF6], 1 with (EtO)2PS2NH4, Et2NCS2Na, and pySK in methanol at room temperature, respectively. Treatment of 1 with dppm (dppm: bis(diphenylphosphino)methane) in dichloromethane at room temperature gives complex [Pd(PPh3)(η1‐SCNMe2)(η2‐dppm)] [PF6], 5 . All of the complexes are identified by spectroscopic methods and complex 1 is determined by single‐crystal X‐ray diffraction.  相似文献   

4.
Reactions of one or two equiv. of cyclohexyl isocyanide in THF at room temperature with Mo?Mo triply bonded complexes [Mo(CO)2(η5‐C5H4R)]2 (R=COCH3, CO2CH3) gave the isocyanide coordinated Mo? Mo singly bonded complexes with functionally substituted cyclopentadienyl ligands, [Mo(CO)2(η5‐C5H4R)]2(μη2‐CNC6H11) ( 1a , R=COCH3; 1b , R=CO2CH3) and [Mo(CO)2(η5‐C5H4R)(CNC6H11)]2 ( 2a , R=COCH3; 2b , R=CO2CH3), respectively. Complexes 1a , 1b and 2a , 2b could be more conveniently prepared by thermal decarbonylation of Mo? Mo singly bonded complexes [Mo(CO)3(η5‐C5H4R)]2 (R=COCH3, CO2CH3) in toluene at reflux, followed by treatment of the resulting Mo?Mo triply bonded complexes [Mo(CO)2(η5‐C5H4R)]2 (R=COCH3, CO2CH3) in situ with cyclohexyl isocyanide. While 1a , 1b and 2a , 2b were characterized by elemental analysis and spectroscopy, 1b was further characterized by X‐ray crystallography.  相似文献   

5.
The selective functionalization of the polyphosphorus moiety Ph2PCH2PPh2PPPP present as a tetrahapto‐ligand in complex [Ir(dppm)(Ph2PCH2PPh2PPPP)]+ ( 1 , dppm=Ph2PCH2PPh2) was obtained by reaction of 1 with water under basic conditions at room temperature. The formation of the new triphosphaallyl moiety η3‐P3{P(O)H} was determined in solution by NMR spectroscopy, and confirmed in the solid state by a single‐crystal X‐ray structure of the stable product [Ir(κ2‐dppm)(κ1‐dppm)(η3‐P3{P(O)H})] ( 2 ). In solution, 2 has a fluxional behavior attributable to the four P atoms belonging to the tetraphosphorus moiety in 1 and exhibits a chemical exchange process involving the two PPh2 moieties of the same bidentate ligand, as determined by 1D and 2D NMR spectroscopy experiments carried out at variable temperature. The mechanism of the reaction was investigated at the DFT level, which suggested a selective attack of an in‐situ generated OH? anion on one of the non‐coordinated phosphorus atoms of the P4 moiety. The reaction then evolves through an acid‐assisted tautomerization, which leads to the final compound 2 . Bonding analysis pointed out that the new unsubstituted P3‐unit in the η3‐P3{P(O)H} moiety behaves as a triphosphallyl ligand.  相似文献   

6.
Abstract

Treatment of trans-[Mo(N2)2(dpe)(dpm)] (dpe = Ph2PCH2CH2PPh2, dpm = Ph2PCH2PPh2) or trans-[Mo(N2)2(dpe)(dpp)] (dpp = Ph2PCH2CH2CH2PPh2) with excess DMF in benzene at reflux under Ar resulted in the formation of trans-[Mo(CO)(DMF)(dpe)(dpm)] or trans-[Mo(CO)(DMF)(dpe)(dpp)]. X-ray structural analysis of trans-[Mo(CO)(DMF)(dpe)2] was performed using single crystals isolated as the minor product from the reaction mixture of trans-[Mo(N2)2(dpe)(dpp)] and DMF. Crystal data: C56H55O2NP4Mo, monoclinic, space group P21, a = 11.145(4), b = 23.425(5), c = 10.516(3) Å, β = 117.17(2)° V = 2442.6(13) Å3, D calcd = 1.35 g/cm3 for Z = 2. This disclosed the relatively long C O bond distance of the carbonyl ligand and the significantly short C=O bond length in the DMF ligand. When recrystallized from benzene/hexane under N2, trans-[Mo(CO)(DMF)(dpe)(dpm)] was converted into trans-[Mo(CO)(N2)(dpe)(dpm)].  相似文献   

7.
Reactions of pyrimidine‐2‐thione (HpymS) with PdII/PtIV salts in the presence of triphenyl phosphine and bis(diphenylphosphino)alkanes, Ph2P‐(CH2)m‐PPh2 (m = 1, 2) have yielded two types of complexes, viz. a) [M(η2‐N, S‐ pymS)(η1‐S‐ pymS)(PPh3)] (M = Pd, 1 ; Pt, 2 ), and (b) [M(η1‐S‐pymS)2(L‐L)] {L‐L, M = dppm (m = 1) Pd, 3 ; Pt, 4 ; dppe (m = 2), Pd, 5 ; Pt, 6 }. Complexes have been characterized by elemental analysis (C, H, N), NMR spectroscopy (1H, 13C, 31P), and single crystal X‐ray crystallography ( 1 , 2 , 4 , and 5 ). Complexes 1 and 2 have terminal η1‐S and chelating η2‐N, S‐modes of pymS, while other Pd/Pt complexes have only terminal η1‐S modes. The solution state 31P NMR spectral data reveal dynamic equilibrium for the complexes 3 , 5 and 6 , whereas the complexes 1 , 2 and 4 are static in solution state.  相似文献   

8.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

9.
The structure and fluxionality of the trihydridodiene complexes (Ph3P)2(η-1,3-<di-ene)ReH3 have been studied by NMR spectroscopy (η-1-3-diene = buta-1,3-diene, 2-methylbuta-1,3-diene, 2,3-dimethylbuta-1,3-diene, cyclohexa-1,3-diene, penta-1,3-diene, hexa-1,3-diene and hexa-2,4-diene). Several rearrangement processes have been observed; they are, in order of increasing temperature: (a) ligand interchange; (b) reversible migration of a hydride ligand on to the diene ligand, leading to η-allyl species and, in the case of the cyclohexadiene trihydride, degenerate isomerisation of the cyclohexadiene moiety; and (c), in the case of the pentadiene and hexadiene derivatives, isomerisation of the diene ligand.  相似文献   

10.
A bis(phosphine)borane ambiphilic ligand, [Fe(η5‐C5H4PPh2)(η5‐C5H4PtBu{C6H4(BPh2)‐ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] ( 1 ) in which the arylborane is η3BCC‐coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6‐dimethylphenyl) afforded [PtL(FcPPB)] {L=CO ( 2 ) and CNXyl ( 3 )} featuring η2BC‐ and η1B‐arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(μ‐H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2H to [Pt(FcPPB)] afforded [Pt(C2Ph)(μ‐H)(FcPPB)] ( 5 ), which rapidly converted to [Pt(FcPPB′)] ( 6 ; FcPPB′=[Fe(η5‐C5H4PPh2)(η5‐C5H4PtBu{C6H4(BPh‐CPh=CHPh‐Z)‐ortho}]) in which the newly formed vinylborane is η3BCC‐coordinated. Unlike arylborane complex 1 , vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2Ph at room temperature.  相似文献   

11.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

12.
The crystal and molecular structures of the title compound, 3‐bromo‐3‐(di­benzyl­phenyl­phospho­nio)‐2,2‐di­phenyl‐5‐trifluoromethyl‐1H‐benzo­[e][1,2]­phosphanickelepine, [NiBr(C22H17F3P)(C20H19P)], which was obtained as the major regioisomer from insertion of HCCCF3 into the Ni—C bond of the five‐membered phosphanickelacycle [NiBr(o‐C6H4CH2PPh2‐κ2C,P){PPh(CH2Ph)2}], have been determined. Principal geometric data include the Ni—X bond lengths Ni—Br 2.3343 (4) Å, Ni—P 2.1867 (7) and 2.2094 (7) Å, and Ni—C 1.882 (3) Å, and the two trans angles P—Ni—P 171.55 (3)° and Br—Ni—C 176.88 (9)°.  相似文献   

13.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

14.
The o‐substituted hybrid phenylphosphines, PPh2(o‐C6H4NH2) and PPh2(o‐C6H4OH), could be deprotonated with LDA or n‐BuLi to yield PPh2(o‐C6H4NHLi) and PPh2(o‐C6H4OLi), respectively. When added to a solution of (η5‐C5H5)Fe(CO)2I at room temperature, these two lithiated reagents produce a chelated neutral complex 1 (η5‐C5H5)Fe(CO)[C(O)NH(o‐C6H4)PPh2C,P‐η2] for the former and mainly a zwitterionic complex 2 , (η5‐C5H5)Fe+(CO)2[PPh2(o‐C6H4O?)] for the latter. Complex 1 could easily be protonated and then decarbonylated to give 4 [(η5‐C5H5)Fe(CO){NH2(o‐C6H4)PPh2N,P‐η2}+]. Complexes 1 and 4‐I have been crystallographically characterized with X‐ray diffraction.  相似文献   

15.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

16.
Relative to other cyclic poly‐phosphorus species (that is, cyclo‐Pn), the planar cyclo‐P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4 complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2? dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo‐P4 complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2 and Mo(η4‐P4)(CO)2(CNArDipp2)2 with KC8 produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2? and [Mo(η4‐P4)(CO)2(CNArDipp2)]2?, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3 regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.  相似文献   

17.
The first doubly‐bridged thiocarbamoyl metal complex [Mo(Cl)(CO)2(PPh3)]212:μ‐SCNMe2)2 ( 2 ) was formed from stirring [Mo(CO)22‐SCNMe2)(PPh3)2Cl] ( 1 ) in dichloromethane at room temperature. Complex 2 is a dimer with each thiocarbamoyl unit coordinating through sulfur and carbon to one metal center and bridging both metals through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

18.
Mixed‐ligands hydride complexes [RuHCl(CO)(PPh3)2{P(OR)3}] ( 2 ) (R = Me, Et) were prepared by allowing [RuHCl(CO)(PPh3)3] ( 1 ) to react with an excess of phosphites P(OR)3 in refluxing benzene. Treatment of hydrides 2 first with triflic acid and next with an excess of hydrazine afforded hydrazine complexes [RuCl(CO)(κ1‐NH2NHR1)(PPh3)2{P(OR)3}]BPh4 ( 3 , 4 ) (R1 = H, CH3). Diethylcyanamide derivatives [RuCl(CO)(N≡CNEt2)(PPh3)2{P(OR)3}]BPh4 ( 5 ) were also prepared by reacting 2 first with HOTf and then with N≡CNEt2. The complexes were characterized spectroscopically and by X‐ray crystal structure determination of [RuHCl(CO)(PPh3)2{P(OEt)3}] ( 2b ).  相似文献   

19.
A study regarding coordination chemistry of the bis(diphenylphosphino)amide ligand Ph2P‐N‐PPh2 at Group 4 metallocenes is presented herein. Coordination of N,N‐bis(diphenylphosphino)amine ( 1 ) to [(Cp2TiCl)2] (Cp=η5‐cyclopentadienyl) generated [Cp2Ti(Cl)P(Ph2)N(H)PPh2] ( 2 ). The heterometallacyclic complex [Cp2Ti(κ2P,P‐Ph2P‐N‐PPh2)] ( 3 Ti ) can be prepared by reaction of 2 with n‐butyllithium as well as from the reaction of the known titanocene–alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with the amine 1 . Reactions of the lithium amide [(thf)3Li{N(PPh2)2}] with [Cp2MCl2] (M=Zr, Hf) yielded the corresponding zirconocene and hafnocene complexes [Cp2M(Cl){κ2N,P‐N(PPh2)2}] ( 4 Zr and 4 Hf ). Reduction of 4 Zr with magnesium gave the highly strained heterometallacycle [Cp2Zr(κ2P,P‐Ph2P‐N‐PPh2)] ( 3 Zr ). Complexes 2 , 3 Ti , 4 Hf , and 3 Zr were characterized by X‐ray crystallography. The structures and bondings of all complexes were investigated by DFT calculations.  相似文献   

20.
1, 3‐Diaminobenzene reacts readily with PPh2Cl to give N, N, N′, N′‐tetrakis(diphenylphosphanyl)‐1, 3‐diaminobenzene ( 1 ) in excellent yield. The dinuclear complex [1, 3‐{cis‐Mo(CO)4(PPh2)2N}2C6H4] ( 2 ) is obtained in high yield from 1 and cis‐[Mo(CO)4(NCEt)2]. Compounds 1 and 2 were characterized by NMR spectroscopy (1H, 13C, 31P) and by crystal structure determination. The latter shows the formation of a bis‐chelate complex with Mo‐P‐N‐P four‐membered rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号