首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triangle‐free quasi‐symmetric 2‐ (v, k, λ) designs with intersection numbers x, y; 0<x<y<kand λ>1, are investigated. It is proved that λ?2y ? x ? 3. As a consequence it is seen that for fixed λ, there are finitely many triangle‐free quasi‐symmetric designs. It is also proved that: k?y(y ? x) + x. Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 19:422‐426, 2011  相似文献   

2.
Gleason and Mallows and Sloane characterized the weight enumerators of maximal self-orthogonal codes with all weights divisible by 4. We apply these results to obtain a new necessary condition for the existence of 2 − (v, k, λ) designs where the intersection numbers s1…,sn satisfy s1s2 ≡ … ≡ sn (mod 2). Non-existence of quasi-symmetric 2−(21, 18, 14), 2−(21, 9, 12), and 2−(35, 7, 3) designs follows directly from the theorem. We also eliminate quasi-symmetric 2−(33, 9, 6) designs. We prove that the blocks of quasi-symmetric 2−(19, 9, 16), 2−(20, 10, 18), 2-(20,8, 14), and 2−(22, 8, 12) designs are obtained from octads and dodecads in the [24, 12] Golay code. Finally we eliminate quasi-symmetric 2−(19,9, 16) and 2-(22, 8, 12) designs.  相似文献   

3.
In this paper we either prove the non‐existence or give explicit construction of primitive symmetric (v, k, λ) designs with v=pm<2500, p prime and m>1. The method of design construction is based on an automorphism group action; non‐existence results additionally include the theory of difference sets, multiplier theorems in particular. The research involves programming and wide‐range computations. We make use of software package GAP and the library of primitive groups which it contains. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 141–154, 2010  相似文献   

4.
Abstact: We introduce generalizations of earlier direct methods for constructing large sets of t‐designs. These are based on assembling systematically orbits of t‐homogeneous permutation groups in their induced actions on k‐subsets. By means of these techniques and the known recursive methods we construct an extensive number of new large sets, including new infinite families. In particular, a new series of LS[3](2(2 + m), 8·3m ? 2, 16·3m ? 3) is obtained. This also provides the smallest known ν for a t‐(ν, k, λ) design when t ≥ 16. We present our results compactly for ν ≤ 61, in tables derived from Pascal's triangle modulo appropriate primes. © 2000 John Wiley & Sons, Inc. J Combin Designs 9: 40–59, 2001  相似文献   

5.
We investigate the spectrum for k‐GDDs having k + 1 groups, where k = 4 or 5. We take advantage of new constructions introduced by R. S. Rees (Two new direct product‐type constructions for resolvable group‐divisible designs, J Combin Designs, 1 (1993), 15–26) to construct many new designs. For example, we show that a resolvable 4‐GDD of type g5 exists if and only if g ≡ 0 mod 12 and that a resolvable 5‐GDD of type g6 exists if and only if g ≡ 0 mod 20. We also show that a 4‐GDD of type g4m1 exists (with m > 0) if and only if gm ≡ 0 mod 3 and 0 < m ≤ 3g/2, except possibly when (g,m) = (9,3) or (18,6), and that a 5‐GDD of type g5m1 exists (with m > 0) if and only if gm ≡ 0 mod 4 and 0 < m ≤ 4g/3, with 32 possible exceptions. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 363–386, 2000  相似文献   

6.
Large sets of disjoint group‐divisible designs with block size three and type 2n41 were first studied by Schellenberg and Stinson because of their connection with perfect threshold schemes. It is known that such large sets can exist only for n ≡0 (mod 3) and do exist for all odd n ≡ (mod 3) and for even n=24m, where m odd ≥ 1. In this paper, we show that such large sets exist also for n=2k(3m), where m odd≥ 1 and k≥ 5. To accomplish this, we present two quadrupling constructions and two tripling constructions for a special large set called *LS(2n). © 2002 Wiley Periodicals, Inc. J Combin Designs 11: 24–35, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10032  相似文献   

7.
A (v, k, λ)‐Mendelsohn design(X, ℬ︁) is called self‐converse if there is an isomorphic mapping ƒ from (X, ℬ︁) to (X, ℬ︁−1), where ℬ︁−1 = {B−1 = 〈xk, xk−1,…,x2, x1〉: B = 〈x1, x2,…,xk−1, xk〉 ϵ ℬ︁}. In this paper, we give the existence spectrum for self‐converse (v, 4, 1)– and (v, 5, 1)– Mendelsohn designs. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 411–418, 2000  相似文献   

8.
In this article, the existence of additive BIB designs is discussed with direct and recursive constructions, together with investigation of a property of resolvability. Such designs can be used to construct infinite families of BIB designs. In particular, we obtain a series of B(sn, tsm, λt (tsm ? 1) (sn‐m ? 1)/[2(sm ? 1)]) for any positive integer λ, such that sn (sn ? 1) λ ≡ 0 (mod sm (sm ? 1) and for any positive integer t with 2 ≤ tsn‐m, where s is an odd prime power. Connections between additive BIB designs and other combinatorial objects such as multiply nested designs and perpendicular arrays are discussed. A construction of resolvable BIB designs with v = 4k is also proposed. © 2007 Wiley Periodicals, Inc. J Combin Designs 15: 235–254, 2007  相似文献   

9.
By this article we conclude the construction of all primitive ( v, k,λ ) symmetric designs with v < 2500 , up to a few unsolved cases. Complementary to the designs with prime power number of points published previously, here we give 55 primitive symmetric designs with vp m , p prime and m positive integer, together with the analysis of their full automorphism groups. The research involves programming and wide‐range computations. We make use of the software package GAP and the library of primitive groups which it contains. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:463‐474, 2011  相似文献   

10.
J. Wang  L. Ji 《组合设计杂志》2009,17(2):136-146
In this article, we first show that a group divisible 3‐design with block sizes from {4, 6}, index unity and group‐type 2m exists for every integer m≥ 4 with the exception of m = 5. Such group divisible 3‐designs play an important role in our subsequent complete solution to the existence problem for directed H‐designs DHλ(m, r, 4, 3)s. We also consider a way to construct optimal codes capable of correcting one deletion or insertion using the directed H‐designs. In this way, the optimal single‐deletion/insertion‐correcting codes of length 4 can be constructed for all even alphabet sizes. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 136–146, 2009  相似文献   

11.
H. Cao  J. Lei  L. Zhu 《组合设计杂志》2001,9(4):285-296
Large sets of disjoint group‐divisible designs with block size three and type 2n41 have been studied by Schellenberg, Chen, Lindner and Stinson. These large sets have applications in cryptography in the construction of perfect threshold schemes. It is known that such large sets can exist only for n ≡ 0 (mod 3) and do exist for n = 6 and for all n = 3k, k ≥ 1. In this paper, we present new recursive constructions and use them to show that such large sets exist for all odd n ≡ 0 (mod 3) and for even n = 24m, where m odd ≥ 1. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 285–296, 2001  相似文献   

12.
Let Ψ(t,k) denote the set of pairs (v,λ) for which there exists a graphical t‐(v,k,λ) design. Most results on graphical designs have gone to show the finiteness of Ψ(t,k) when t and k satisfy certain conditions. The exact determination of Ψ(t,k) for specified t and k is a hard problem and only Ψ(2,3), Ψ(2,4), Ψ(3,4), Ψ(4,5), and Ψ(5,6) have been determined. In this article, we determine completely the sets Ψ(2,5) and Ψ(3,5). As a result, we find more than 270,000 inequivalent graphical designs, and more than 8,000 new parameter sets for which there exists a graphical design. Prior to this, graphical designs are known for only 574 parameter sets. © 2006 Wiley Periodicals, Inc. J Combin Designs 16: 70–85, 2008  相似文献   

13.
14.
The following results for proper quasi‐symmetric designs with non‐zero intersection numbers x,y and λ > 1 are proved.
  • (1) Let D be a quasi‐symmetric design with z = y ? x and v ≥ 2k. If x ≥ 1 + z + z3 then λ < x + 1 + z + z3.
  • (2) Let D be a quasi‐symmetric design with intersection numbers x, y and y ? x = 1. Then D is a design with parameters v = (1 + m) (2 + m)/2, b = (2 + m) (3 + m)/2, r = m + 3, k = m + 1, λ = 2, x = 1, y = 2 and m = 2,3,… or complement of one of these design or D is a design with parameters v = 5, b = 10, r = 6, k = 3, λ = 3, and x = 1, y = 2.
  • (3) Let D be a triangle free quasi‐symmetric design with z = y ? x and v ≥ 2k, then xz + z2.
  • (4) For fixed z ≥ 1 there exist finitely many triangle free quasi‐symmetric designs non‐zero intersection numbers x, y = x + z.
  • (5) There do not exist triangle free quasi‐symmetric designs with non‐zero intersection numbers x, y = x + 2.
© 2006 Wiley Periodicals, Inc. J Combin Designs 15: 49–60, 2007  相似文献   

15.
Several new families of c‐Bhaskar Rao designs with block size 4 are constructed. The necessary conditions for the existence of a c‐BRD (υ,4,λ) are that: (1)λmin=?λ/3 ≤ c ≤ λ and (2a) c≡λ (mod 2), if υ > 4 or (2b) c≡ λ (mod 4), if υ = 4 or (2c) c≠ λ ? 2, if υ = 5. It is proved that these conditions are necessary, and are sufficient for most pairs of c and λ; in particular, they are sufficient whenever λ?c ≠ 2 for c > 0 and whenever c ? λmin≠ 2 for c < 0. For c < 0, the necessary conditions are sufficient for υ> 101; for the classic Bhaskar Rao designs, i.e., c = 0, we show the necessary conditions are sufficient with the possible exception of 0‐BRD (υ,4,2)'s for υ≡ 4 (mod 6). © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 361–386, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10009  相似文献   

16.
Let M = {m1, m2, …, mh} and X be a v-set (of points). A holey perfect Mendelsohn designs (briefly (v, k, λ) - HPMD), is a triple (X, H, B), where H is a collection of subsets of X (called holes) with sizes M and which partition X, and B is a collection of cyclic k-tuples of X (called blocks) such that no block meets a hole in more than one point and every ordered pair of points not contained in a hole appears t-apart in exactly λ blocks, for 1 ≤ tk − 1. The vector (m1, m2, …, mh) is called the type of the HPMD. If m1 = m2 = … = mh = m, we write briefly mh for the type. In this article, it is shown that the necessary condition for the existence of a (v, 4, λ) - HPMD of type mh, namely, is also sufficient with the exception of types 24 and 18 with λ = 1, and type m4 for odd m with odd λ. © 1997 John Wiley & Sons, Inc. J Combin Designs 5: 203–213, 1997  相似文献   

17.
In this article we study the n‐existential closure property of the block intersection graphs of infinite t‐(v, k, λ) designs for which the block size k and the index λ are both finite. We show that such block intersection graphs are 2‐e.c. when 2?t?k ? 1. When λ = 1 and 2?t?k, then a necessary and sufficient condition on n for the block intersection graph to be ne.c. is that n?min{t, ?(k ? 1)/(t ? 1)? + 1}. If λ?2 then we show that the block intersection graph is not ne.c. for any n?min{t + 1, ?k/t? + 1}, and that for 3?n?min{t, ?k/t?} the block intersection graph is potentially but not necessarily ne.c. The cases t = 1 and t = k are also discussed. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 85–94, 2011  相似文献   

18.
L. Ji 《组合设计杂志》2006,14(5):400-405
Two types of large sets of coverings were introduced by T. Etzion (J Combin Designs, 2(1994), 359–374). What is maximum number (denoted by λ(n,k)) of disjoint optimal (n,k,k ? 1) coverings? What is the minimum number (denoted by µ(n,k)) of disjoint optimal (n,k,k ? 1) coverings for which the union covers the space? For k = 3, the numbers µ(n,k) have been determined with an unsolved order n = 17, and the numbers λ(n,k) have also been determined with an unsolved infinite class n ≡ 5 (mod 6). The unsolved numbers λ(n,3) and µ(17,3) will be completed in this note. This solution is based on the existence of a class of partitionable candelabra systems. © 2006 Wiley Periodicals, Inc. J Combin Designs 14: 400–405, 2006  相似文献   

19.
Abstact: A symmetric 2‐(100, 45, 20) design is constructed that admits a tactical decomposition into 10 point and block classes of size 10 such that every point is in either 0 or 5 blocks from a given block class, and every block contains either 0 or 5 points from a given point class. This design yields a Bush‐type Hadamard matrix of order 100 that leads to two new infinite classes of symmetric designs with parameters and where m is an arbitrary positive integer. Similarly, a Bush‐type Hadamard matrix of order 36 is constructed and used for the construction of an infinite family of designs with parameters and a second infinite family of designs with parameters where m is any positive integer. © 2000 John Wiley & Sons, Inc. J Combin Designs 9: 72–78, 2001  相似文献   

20.
We describe a computer search for the construction of simple designs with prescribed automorphism groups. Using our program package DISCRETA this search yields designs with parameter sets 7-(33, 8, 10), 7-(27, 9, 60), 7-(26, 9, λ) for λ = 54, 63, 81, 7-(26, 8, 6), 7-(25, 9, λ) for λ = 45, 54, 72, 7-(24, 9, λ) for λ = 40, 48, 64, 7-(24, 8, λ) for λ = 4, 5, 6, 7, 8, 6-(25, 8, λ) for λ = 36, 45, 54, 63, 72, 81, 6-(24, 8, λ) for λ = 36, 45, 54, 63, 72, 5-(19, 6, 4), and 5-(19, 6, 6). In several of these cases we are able to determine the exact number of isomorphism types of designs with that prescribed automorphism group. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 79–94, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号