首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Electroanalysis》2006,18(3):275-281
Mesoporous V2O5/Nafion composite films have been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium (II) (Ru(bpy) ) on an electrode surface to yield a solid‐state electrogenerated chemiluminescence (ECL) sensor. The electrochemical and ECL behavior of Ru(bpy) ion‐exchanged into the composite films has been characterized as a function of the amount of Nafion incorporated into the V2O5/Nafion composite. The composite film with 80% Nafion content has the largest pore diameter (4.19 nm) and yields the maximum ECL response for tripropylamine (TPA) because of the fast diffusion of analyte into the film with large pores. Due to the enlarged pore size and enhanced conductivity of the V2O5/Nafion composite, the present ECL sensor based on the composite films exhibited around 2 orders of magnitude higher ECL response and one order of magnitude lower detection limit for TPA (10 nM) compared to those obtained with the ECL sensors based on other types of sol–gel ceramic/Nafion composite films such as SiO2/Nafion and TiO2/Nafion.  相似文献   

2.
Upon the electrochemical oxidation of tris(2,2′-bipyridyl) ruthenium(II) [Ru(bpy)2+3] and hydroxyl carboxylic acids, for instance, citric acid, tartaric acid, malic acid, and -gluconic acid, bright electrochemiluminescences (ECLs) were observed. Different luminescent reactions were presented depending on the applied potential. The light emission was mainly caused by the reaction between alkoxide radical ion and Ru(bpy)3+3below the potential +1.80 V (vs Ag/AgCl). The luminescence intensity obviously increased because of the more complex reaction process. The luminescence wavelength of 608 nm, which could be found either at higher potential than +1.80 V or in the potential range from +1.30 to +1.80 V, confirmed that ECL was caused by Ru(bpy)2+3*. The factors which affect the determination and HPLC separation of the four acids were also investigated.  相似文献   

3.
A highly sensitive reversed‐phase liquid chromatographic (HPLC) method was investigated to analyze a range of positron emission tomography (PET) radiopharmaceuticals using electrogenerated chemiluminescence (ECL) detection. ECL is based on the reaction of PET molecules with tris(2,2′‐bipyridyl)ruthenium(III) [Ru(bpy)33+], which is generated through the on‐line electro‐oxidation of Ru(bpy)32+. In 21 different radiopharmaceuticals studied, 18 compounds could be detected with detection limits (signal‐to‐noise ratio = 3) of 0.12–72 ng/mL per 20 μL injection. Sufficient reproducibility and linearity were obtained for the quantitative determination of PET molecules in pharmaceutical fluid. This method could be successfully applied to quality control tests of PET radiopharmaceuticals with ultra‐high specific radioactivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《Electroanalysis》2005,17(17):1517-1522
In this paper, we report the first attempt to use humic acid (HA) as modifiers to prepare the organic‐inorganic hybrid modified glassy carbon electrodes based on HA‐silica‐PVA (poly(vinyl alcohol)) sol‐gel composite. Electroactive species of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy) ) can easily incorporate into the HA‐silica‐PVA films to form Ru(bpy) modified electrodes. The amount of Ru(bpy) incorporated in the composite films strongly depends on the amount of HA in the hybrid sol. Electrochemical and electrogenerated chemiluminescence (ECL) of Ru(bpy) immobilized in HA‐silica composite films coated on a glassy carbon electrode have been studied with tripropylamine (TPA) as the coreactant. The analytical performance of this modified electrode was evaluated in a flow injection analysis (FIA) system with a homemade flow cell. The as‐prepared electrode showed good stability and high sensitivity. The detection limits (S/N=3) were 0.050 μmol L?1 for TPA and 0.20 μmol L?1 for oxalate, and the linear ranges were from 0.10 μmol L?1 to 1.0 mmol L?1 for TPA and from 1.0 μmol L?1 to 1.0 mmol L?1 for oxalate, respectively. The resulting electrodes were stable over two months.  相似文献   

5.
Mesoporous titania‐Nafion composite doped with carbon nanotube (CNT) has been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy)32+) and alcohol dehydrogenase on an electrode surface to yield a highly sensitive and stable electrogenerated chemiluminescence (ECL) ethanol biosensor. The presence of CNT in the composite film increases not only the sensitivity of the ECL biosensor but also the long‐term stability of the biosensor. The present biosensor responds linearly to ethanol in the wide concentration ranges from 1.0×10?5 M to 1.0×10?1 M with a detection limit of 5.0×10?6 M (S/N=3). The present ECL ethanol biosensor exhibited higher ECL response compared to that obtained with the ECL biosensor based on the corresponding composite without CNT. The present CNT‐based ECL biosensor showed good long‐term stability with 75% of its initial activity retained after 2 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

6.
The electrogenerated chemiluminescence (ECL) of the Ru(bpy)32+ (bpy, 2,2′-bipyridine)/tri-n-propylamine (TPrA) system can be produced at an oxidation-potential well before the oxidation of Ru(bpy)32+. Here, we describe the unique features of the low-oxidation-potential (LOP) ECL. The LOP ECL exhibited strong dependence on solution pH with the maximum emission at pH  7.7. Compared with the conventional ECL, the LOP ECL was much more significantly diminished at high pH (>10), probably due to the short lifetime of TPrA cation radical which is a crucial intermediate for the LOP emission. It was also found that the preceding deprotonation step played an important role in TPrA oxidation at neutral pH and would remarkably influence the emission intensity. As excess intermediate radicals were produced upon rapid TPrA oxidation, only 5 mM TPrA was needed to achieve the maximum LOP ECL intensity in detecting trace Ru(bpy)32+ (<1 μM) and the LOP ECL response to Ru(bpy)32+ concentration was linear. Compared with the conventional Ru(bpy)32+/TPrA ECL, the LOP ECL technique not only produces higher emission intensity at lower oxidation-potential, but also significantly reduces the amount of the coreactant.  相似文献   

7.
《Electroanalysis》2003,15(18):1460-1464
The electroactive composite containing tris(2,2′‐bipyridine) ruthenium(II) and 12‐molybdophosphate (RuPMo12) was synthesized and first used as a bifunctional electrocatalyst to fabricate a chemically bulk‐modified carbon paste electrode (RuPMo12‐CPE) by direct mixing. The electrochemical behavior of the RuPMo12‐CPE was studied by cyclic voltammetry. The RuPMo12‐CPE presents good electrocatalytic activity not only toward the reduction of hydrogen peroxide and bromate, which is attributed to the function of molybdophosphate, but also toward the oxidation of arsenite, which is primarily attributed to the function of tris(2,2′‐bipyridine) ruthenium(II). The remarkable advantage of the RuPMo12‐CPE is its good stability owing to the insolubility of RuPMo12 and reproducibility of surface renewal.  相似文献   

8.
The acid dissociation constant, pKa, for the ground and excited states of ruthenium tris(4′-methyl-2,2′-bipyridine-4-carboxylic acid) complex have been measured. The ground state pKa obtained from the pH titration curve of the complex absorption at 454 nm was 2.5. The lifetimes of the excited-state for deprotonated and protonated ruthenium complexes are 595 and 150 ns, respectively. The excited-state pKa* is obtained from the emission titration curve at 630 nm and corrected for the excited-state lifetime to be 4.2. The increase of 1.7 pH units in the acid dissociation constant in the excited-state indicates that the ligand is much more basic in the excited-state. This result confirms the MLCT assignment for the lowest electronic transition of [Ru(mbpyCOOH)3]2+.  相似文献   

9.
In the present work, we conducted an investigation on the electrochemical and ECL behavior of Ru(bpy) /TPrA system in the presence of pyridine and its analogues on platinum and gold electrode. Results showed that pyridine and its analogues enhanced Ru(bpy) /TPrA ECL signal and exhibited different enhancement effects on different electrodes. On platinum electrode, the maximum enhancement factor of about 5 was obtained. On gold electrode, a low‐oxidation‐potential (LOP) ECL signal occurred and increased.  相似文献   

10.
Electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium, Ru(bpy)32+ in the presence of various co‐reactants, such as tripropylamine (TPA), oxalate ion (C2O42?), ascorbic acid (H2A) and dehydroascorbic acid (DHA), were investigated under ultrasound irradiation. In sono‐ECL experiments, an indium‐thin‐oxide (ITO) was used as working electrode, and a titanium tipped sonic horn probe (diameter 2 mm) which operated at a frequency of 20 kHz was set in the front of the ITO electrode. Under the ultrasound irradiation, ECL signals were found to be significantly enhanced when TPA and C2O42? were used as co‐reactants, only slightly enhanced in Ru(bpy)32+/DHA system, but total quenched in Ru(bpy)32+/H2A system. The difference of Ru(bpy)32+ ECL behaviors for various co‐reactant could to be due to the different kinetics of catalytic reactions associated in ECL schemes. ECL quenching effect observed in Ru(bpy)32+/H2A system was suggested to be due to electron transfer (ET) route between the excited state *Ru(bpy)32+ and ascorbate anion HA? diffused from the bulk solution, where the diffusional HA? species served as electron donor. The effect becomes more pronounced upon sonication because the effective collision frequency between *Ru(bpy)32+ and HA? would be significantly increased by the enhanced mass transport effect of ultrasound.  相似文献   

11.
联吡啶钌电化学发光研究进展   总被引:6,自引:5,他引:6  
联吡啶钌电化学发光在免疫分析、核酸分析、共反应物分析和适配子传感器等方面具有广泛的应用前景,成为在诸多电化学发光体系如9,10-二苯基蒽、光泽精、联吡啶钌、过氧化草酸酯、鲁米诺、石墨烯和量子点等之中近年来国际上研究最多的电化学发光体系之一.本综述对已发表的绝大多数联吡啶钌电化学发光成果加以归纳总结,简要介绍联吡啶钌电化学发光的概况,并尝试展望其今后的研究趋势.  相似文献   

12.
联吡啶钌电化学发光传感器测定海洛因   总被引:1,自引:0,他引:1  
利用离子液体为粘合剂制作碳糊电极,采用高分子聚合法,合成包埋有Ru(bpy)2(dcbpy)2+的高分子聚合物,将钌聚合物掺杂于离子液体碳糊电极中,制作电化学发光传感器.结果表明,此传感器具有很好的电化学发光特性,与用石蜡油为粘合剂制作的电化学发光传感器相比,离子液体为粘合剂的电化学发光传感器检测三丙胺的检出限降低1个数量级.海洛因对电化学发光传感器的发光信号有很好的增强作用,基于此建立了高灵敏度检测海洛因的电化学发光分析法,海洛因浓度与电化学发光信号在2.0×10-9~2.0×10-5 mol/L范围内呈良好的线性关系,检出限为8×10-10 mol/L (S/N=3).将电化学发光传感器在5.0×10-9 mol/L海洛因溶液中采用线性循环电位连续扫描60圈,相对标准偏差小于2.2%.本方法用于血清中海洛因的检测,其回收率为94%~101%.  相似文献   

13.
In the title compound, [Fe(C10H8N2)3](C9H5N4O)2·2H2O, the chiral cations lie across twofold rotation axes in the space group C2/c. The anions and the water molecules are linked by two independent O—H...N hydrogen bonds to form C22(8) chains, and these chains are linked by the cations via C—H...N and C—H...O hydrogen bonds to form two interpenetrating three‐dimensional frameworks, each of which contains only one enantiomeric form of the chiral cation.  相似文献   

14.
A novel electrogenerated chemiluminescence (ECL) sensor based on natural clay and ionic liquid was fabricated. Tris(2,2′‐bipyridine)ruthenium(II) (Ru(bpy)32+) was immobilized on natural clay surface through simple adsorption. An ECL sensor was prepared by mixing Ru(bpy)32+‐incorporated clay, graphite powder and an ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate) as the binder. The electrochemical behavior and ECL of the immobilized Ru(bpy)32+ was investigated. It was observed that the ECL of immobilized Ru(bpy)32+ was activated by the ionic liquid. The proposed ECL sensor showed high sensitivity to tri‐n‐propylamine (TPrA) and the detection limit was found to be 20 pM. In addition, the ECL sensor displayed good stability for TPrA detection and long‐term storage stability.  相似文献   

15.
A highly selective and sensitive detection method based on tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+] electrogenerated chemiluminescence (ECL) has been developed for the quantitative determination of β-blockers in both pharmaceutical preparations and human urine samples. The ECL emission is based on the reaction between electro-oxidized Ru(bpy)33+ and the secondary amino groups on the β-blockers. The ECL intensities for the β-blockers were strongly dependent on the pH at which the ECL detections were conducted, with the maximum intensities being obtained at pH 9.0. Under the optimal condition, the detection limit for atenolol and metoprolol were almost 0.5 μM (50 pmol) and 0.08 μM (8 pmol), respectively, with S/N of 3 and a linear working range that extends four orders of magnitude with relative standard deviations below 5% for 10 replicate injected samples. The concentrations of atenolol and metoprolol were determined in pharmaceutical preparations using flow injection analysis with Ru(bpy)32+ ECL detection based on standard addition method. The determined values by the present method showed acceptable agreement with the stated values by manufacturers. The determination of the five β-blockers in human urine samples was performed using HPLC-Ru(bpy)32+ ECL detection. The resulting chromatogram was much simpler than that obtained with HPLC-UV absorbance detection.  相似文献   

16.
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom.  相似文献   

17.
Novel 4,4′‐dichloro‐2,2′‐[ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L) and its complexes [CuL] and {[CoL(THF)]2(OAc)2Co} have been synthesized and characterized by elemental analyses, IR, 1H‐NMR and X‐ray crystallography. [CuL] forms a mononuclear structure which may be stabilized by the intermolecular contacts between copper atom (Cu) and oxygen atom (O3) to form a head‐to‐tail dimer. In {[CoL(THF)]2(OAc)2Co}, two acetates coordinate to three cobalt ions through Co? O? C? O? Co bridges and four µ‐phenoxo oxygen atoms from two [CoL(THF)] units also coordinate to cobalt ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)32+‐doped titania (RuDT) nanoparticles dispersed in a perfluorosulfonated ionomer (Nafion) on a glassy carbon electrode (GCE) was developed in this paper. The electroactive component‐Ru(bpy)32+ was entrapped within the titania nanoparticles by the inverse microemulsion polymerization process that produced spherical sensors in the size region of 38±3 nm. The RuDT nanoparticles were characterized by electrochemical, transmission electron and scanning microscopy technology. The Ru(bpy)32+ encapsulation interior of the titania nanoparticles maintains its ECL efficiency and also reduces Ru(bpy)32+ leaching from the titania matrix when immersed in water due to the electrostatic interaction. This is the first attempt to prepare the RuDT nanoparticles and extend the application of electroactive component‐doped nanoparticles into the field of ECL. Since a large amount of Ru(bpy)32+ was immobilized three‐dimensionally on the electrode, the Ru(bpy)32+ ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. The ECL analytical performance of this ECL sensor for tripropylamine (TPA) was investigated in detail. This sensor shows a detection limit of 1 nmol/L for TPA. Furthermore, the present ECL sensor displays outstanding long‐term stability.  相似文献   

19.
Yan Li  Honglan Qi  Fang Fang  Chengxiao Zhang   《Talanta》2007,72(5):1704-1709
An ultrasensitive electrogenerated chemiluminescence (ECL) detection method of DNA hybridization based on single-walled carbon-nanotubes (SWNT) carrying a large number of ruthenium complex tags was developed. The probe single strand DNA (ss-DNA) and ruthenium complex were loaded at SWNT, which was taken as an ECL probe. When the capture ss-DNA with a thiol group was self-assembled onto the surface of gold electrode, and then hybridized with target ss-DNA and further hybridized with the ECL probe to form DNA sandwich conjugate, a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of perfect-matched target ss-DNA in the range from 2.4 × 10−14 to 1.7 × 10−12 M with a detection limit of 9.0 × l0−15 M. The ECL signal difference permitted to discriminate the perfect-matched target ss-DNA and two-base-mismatched ss-DNA. This work demonstrates that SWNT can provide an amplification platform for carrying a large number of ECL probe and thus resulting in an ultrasensitive ECL detection of DNA hybridization.  相似文献   

20.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号