首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper considers the streamline‐upwind Petrov–Galerkin (SUPG) method applied to the unsteady compressible Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and the second‐order accurate time discretization are presented. The numerical method is discussed in detail. The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder. Validation of the finite element formulation via comparisons with experimental data for high‐Mach number perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured skin friction and convective heat transfer on a 15° compression ramp. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The objective of this paper is the development and assessment of a fourth‐order compact scheme for unsteady incompressible viscous flows. A brief review of the main developments of compact and high‐order schemes for incompressible flows is given. A numerical method is then presented for the simulation of unsteady incompressible flows based on fourth‐order compact discretization with physical boundary conditions implemented directly into the scheme. The equations are discretized on a staggered Cartesian non‐uniform grid and preserve a form of kinetic energy in the inviscid limit when a skew‐symmetric form of the convective terms is used. The accuracy and efficiency of the method are demonstrated in several inviscid and viscous flow problems. Results obtained with different combinations of second‐ and fourth‐order spatial discretizations and together with either the skew‐symmetric or divergence form of the convective term are compared. The performance of these schemes is further demonstrated by two challenging flow problems, linear instability in plane channel flow and a two‐dimensional dipole–wall interaction. Results show that the compact scheme is efficient and that the divergence and skew‐symmetric forms of the convective terms produce very similar results. In some but not all cases, a gain in accuracy and computational time is obtained with a high‐order discretization of only the convective and diffusive terms. Finally, the benefits of compact schemes with respect to second‐order schemes is discussed in the case of the fully developed turbulent channel flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A parallel stabilized finite‐element/spectral formulation is presented for incompressible large‐eddy simulation with complex 2‐D geometries. A unique discretization scheme is developed consisting of a streamline‐upwind Petrov–Galerkin/Pressure‐Stabilized Petrov–Galerkin (SUPG/PSPG) finite‐element discretization in the 2‐D plane with a collocated spectral/pseudospectral discretization in the out‐of‐plane direction. This formulation provides an efficient approach for solving 3‐D flows over arbitrary 2‐D geometries. Utilizing this discretization and through explicit temporal treatment of the non‐linear terms, the system of equations for each Fourier mode is decoupled within each time step. A novel parallelization approach is then taken, where the computational work is partitioned in Fourier space. A validation of the algorithm is presented via comparison of results for flow past a circular cylinder with published values for Re=195, 300, and 3900. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
An efficient numerical scheme is outlined for solving the SWEs (shallow water equations) in environmental flow; this scheme includes the addition of a five‐point symmetric total variation diminishing (TVD) term to the corrector step of the standard MacCormack scheme. The paper shows that the discretization of the conservative and non‐conservative forms of the SWEs leads to the same finite difference scheme when the source term is discretized in a certain way. The non‐conservative form is used in the solution outlined herein, since this formulation is simpler and more efficient. The time step is determined adaptively, based on the maximum instantaneous Courant number across the domain. The bed friction is included either explicitly or implicitly in the computational algorithm according to the local water depth. The wetting and drying process is simulated in a manner which complements the use of operator‐splitting and two‐stage numerical schemes. The numerical model was then applied to a hypothetical dam‐break scenario, an experimental dam‐break case and an extreme flooding event over the Toce River valley physical model. The predicted results are free of spurious oscillations for both sub‐ and super‐critical flows, and the predictions compare favourably with the experimental measurements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In this contribution, we investigate strategies to perform shock‐capturing computation of steady hypersonic flow fields by means of residual distribution schemes. The ultimate objective is the computation of flow solutions for which the correct upstream enthalpy value is recovered in the postshock region. To this end, the parallelism existing between the classical Bx scheme and the stabilized finite element techniques is exploited. The simple Lax‐Friedrichs dissipation term is leveraged to build two new residual distribution schemes. Upon testing on both inviscid and viscous steady problems, solutions obtained with one of the two schemes are shown to recover the correct upstream total enthalpy level in the postshock region. This last scheme provides also improved wall pressure and skin friction predictions; heat transfer predictions are, unfortunately, similar to those offered by the Bx scheme. A conjecture for explaining this behavior is exposed.  相似文献   

7.
The development of inviscid and viscous flow solvers for both structured and unstructured meshes is presented in this paper. The solution method is the distribution-formula scheme. This is an explicit, cell-vertex, finite volume method which is essentially second-order accurate in both space and time. The Euler and Navier-Stokes equations are integrated over each finite volume cell to determine the change in flow properties (e.g. density) for the cell. Distribution formulas are then used to distribute such changes to the surrounding vertices. Increments in each vertex (which is a calculation point) thus consist of contributions from the surrounding cells. The original discretization technique involves central differencing and is simple, robust and computationally efficient. In this work, starting with inviscid flow simulations using the original scheme on structured grids, improvements are subsequently made to the scheme by replacing the central differencing portion with MUSCL type higher-order upwind differencing. Numerical investigations with the improved scheme are performed using inviscid flow simulations on structured grids. Upon establishing improved accuracy, stability and excellent shock capturing properties, further extension to viscous flow computations on unstructured adaptive meshes is implemented. Results are presented for laminar, viscous flow over a NACA 0012 airfoil.  相似文献   

8.
This paper presents several numerical results using a vectorized version of a 3D finite element compressible and nearly incompressible Euler and Navier–Stokes code. The assumptions were set on laminar flows and Newtonian fluids. The goal of this research is to show the capabilities of the present code to treat a wide range of problems appearing in laminar fluid dynamics towards the unification from incompressible to compressible and from inviscid to viscous flow codes. Several authors with different approaches have tried to attain this target in CFD with relative success. At the beginning the methods based on operator splitting and perturbation were preferred, but lately, with the wide usage of time-marching algorithms, the preconditioning mass matrix (PMM) has become very popular. With this kind of relaxation scheme it is possible to accelerate the rate of convergence to steady state solutions with the modification of the mass matrix under certain restrictions. The selection of the mass matrix is not an easy task, but we have certain freedom to define it in order to improve the condition number of the system. In this paper we have used a physics-based preconditioner for the GMRES implicit solver developed previously by us and an SUPG formulation for the semidiscretization of the spatial operator. In sections 2 and 3 we present some theoretical aspects related to the physical problem and the mathematical model, showing the inviscid and viscous flow equations to be solved and the variational formulation involved in the finite element analysis. Section 4 deals with the numerical solution of non-linear systems of equations, with some emphasis on the preconditioned matrix-free GMRES solver. Section 5 shows how boundary conditions were treated for both Euler and Navier–Stokes problems. Section 6 contains some aspects about vectorization on the Cray C90. The performance reached by this implementation is close to 1 Gflop using multitasking. Section 7 presents several numerical examples for both models covering a wide range of interesting problems, such as inviscid low subsonic, transonic and supersonic regimes and viscous problems with interaction between boundary layers and shock waves in either attached or separated flows. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
An accurate, fast, matrix-free implicit method has been developed to solve compressible turbulent How problems using the Spalart and Allmaras one equation turbulence model on unstructured meshes. The mean-flow and turbulence-model equations are decoupled in the time integration in order to facilitate the incorporation of different turbulence models and reduce memory requirements. Both mean flow and turbulent equations are integrated in time using a linearized implicit scheme. A recently developed, fast, matrix-free implicit method, GMRES+LU-SGS, is then applied to solve the resultant system of linear equations. The spatial discretization is carried out using a hybrid finite volume and finite element method, where the finite volume approximation based on a containment dual control volume rather than the more popular median-dual control volume is used to discretize the inviscid fluxes, and the finite element approximation is used to evaluate the viscous flux terms. The developed method is used to compute a variety of turbulent flow problems in both 2D and 3D. The results obtained are in good agreement with theoretical and experimental data and indicate that the present method provides an accurate, fast, and robust algorithm for computing compressible turbulent flows on unstructured meshes.  相似文献   

10.
We present a grid‐free or meshless approximation called the kinetic meshless method (KMM), for the numerical solution of hyperbolic conservation laws that can be obtained by taking moments of a Boltzmann‐type transport equation. The meshless formulation requires the domain discretization to have very little topological information; a distribution of points in the domain together with local connectivity information is sufficient. For each node, the connectivity consists of a set of nearby nodes which are used to evaluate the spatial derivatives appearing in the conservation law. The derivatives are obtained using a modified form of the least‐squares approximation. The method is applied to the Euler equations for inviscid flow and results are presented for some 2‐D problems. The ability of the new scheme to accurately compute inviscid flows is clearly demonstrated, including good shock capturing ability. Comparisons with other grid‐free methods are made showing some advantages of the current approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A meshless method – The Least Square Finite Difference scheme (LSFD) with diffusion is analyzed and applied to inviscid flows. The scheme is made second-order by using a modified difference in the formulation of LSFD. Several numerical experiments, namely the Sod shock tube and the shallow water problems, are carried out and, in the limelight of the results obtained, the ability of the scheme to resolve shock wave, rarefaction wave, and contact discontinuity is discussed. The conditional stability of the LSFD scheme is established. The LSFD uses weights to diagonalize the least square matrix resulting in the spatial discretization in order to gain computational time. We prove that there exists a unique weight for the resulting optimization problem. The weighted version of LSFD is used to solve the isentropic vortex problem numerically and the results are used to discuss the dissipative nature of the scheme. Five configurations of the two-dimensional Riemann problems are used in our numerical experiments. The capability of the scheme to capture the complex interaction of multiple planar waves is discussed in the limelight of the results on the Riemann problems. The result of the shock reflection problem shows that the scheme is minimally dissipative and leads to sharp and well-resolved shocks.  相似文献   

13.
A study of viscous and inviscid hypersonic flows using generalized upwind methods is presented. A new family of hybrid flux-splitting methods is examined for hypersonic flows. The hybrid method is constructed by the superposition of the flux-vector-splitting (FVS) method and second-order artificial dissipation in the regions of strong shock waves. The conservative variables on the cell faces are calculated by an upwind extrapolation scheme to third-order accuracy. A second-order-accurate scheme is used for the discretization of the viscous terms. The solution of the system of equations is achieved by an implicit unfactored method. In order to reduce the computational time, a local adaptive mesh solution (LAMS) method is proposed. The LAMS method combines the mesh-sequencing technique and local solution of the equations. The local solution of either the Euler or the NAVIER-STOKES equations is applied for the region of the flow field where numerical disturbances die out slowly. Validation of the Euler and NAVIER-STOKES codes is obtained for hypersonic flows around blunt bodies. Real gas effects are introduced via a generalized equation of state.  相似文献   

14.
In the present paper, the author shows that the predictor/multi‐corrector (PMC) time integration for the advection–diffusion equations induces numerical diffusivity acting only in the streamline direction, even though the equations are spatially discretized by the conventional Galerkin finite element method (GFEM). The transient 2‐D and 3‐D advection problems are solved with the PMC scheme using both the GFEM and the streamline upwind/Petrov Galerkin (SUPG) as the spatial discretization methods for comparison. The solutions of the SUPG‐PMC turned out to be overly diffusive due to the additional PMC streamline diffusion, while the solutions of the GFEM‐PMC were comparatively accurate without significant damping and phase error. A similar tendency was seen also in the quasi‐steady solutions to the incompressible viscous flow problems: 2‐D driven cavity flow and natural convection in a square cavity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
An accurate, efficient and robust numerical method for the solution of the section‐averaged De St. Venant equations of open channel flow is presented and discussed. The method consists in a semi‐implicit, finite‐volume discretization of the continuity equation capable to deal with arbitrary cross‐section geometry and in a semi‐implicit, finite‐difference discretization of the momentum equation. By using a proper semi‐Lagrangian discretization of the momentum equation, a highly efficient scheme that is particularly suitable for subcritical regimes is derived. Accurate solutions are obtained in all regimes, except in presence of strong unsteady shocks as in dam‐break cases. By using a suitable upwind, Eulerian discretization of the same equation, instead, a scheme capable of describing accurately also unsteady shocks can be obtained, although this scheme requires to comply with a more restrictive stability condition. The formulation of the two approaches allows a unified implementation and an easy switch between the two. The code is verified in a wide range of idealized test cases, highlighting its accuracy and efficiency characteristics, especially for long time range simulations of subcritical river flow. Finally, a model validation on field data is presented, concerning simulations of a flooding event of the Adige river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The main purpose of this paper is to describe a finite element formulation for solving the equations for k and ε of the classical k–ε turbulence model, or any other two‐equation model. The finite element discretization is based on the SUPG method together with a discontinuity capturing technique to deal with sharp internal and boundary layers. The iterative strategy consists of several nested loops, the outermost being the linearization of the Navier–Stokes equations. The basic k–ε model is used for the implementation of an algebraic stress model that is able to account for the effects of rotation. Some numerical examples are presented in order to show the performance of the proposed scheme for simulating directly steady flows, without the need of reaching the steady state through a transient evolution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A pseudo‐spectral method for the solution of incompressible flow problems based on an iterative solver involving an implicit treatment of linearized convective terms is presented. The method allows the treatment of moderately complex geometries by means of a multi‐domain approach and it is able to cope with non‐constant fluid properties and non‐orthogonal problem domains. In addition, the fully implicit scheme yields improved stability properties as opposed to semi‐implicit schemes commonly employed. Key components of the method are a Chebyshev collocation discretization, a special pressure–correction scheme, and a restarted GMRES method with a preconditioner derived from a fast direct solver. The performance of the proposed method is investigated by considering several numerical examples of different complexity, and also includes comparisons to alternative solution approaches based on finite‐volume discretizations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper aims at the development of a new stabilization formulation based on the finite calculus (FIC) scheme for solving the Euler equations using the Galerkin FEM on unstructured triangular grids. The FIC method is based on expressing the balance of fluxes in a space–time domain of finite size. It is used to prevent the creation of instabilities typically present in numerical solutions due to the high convective terms and sharp gradients. Two stabilization terms, respectively called streamline term and transverse term, are added via the FIC formulation to the original conservative equations in the space–time domain. An explicit fourth‐order Runge–Kutta scheme is implemented to advance the solution in time. The presented numerical test examples for inviscid flows prove the ability of the proposed stabilization technique for providing appropriate solutions especially near shock waves. Although the derived methodology delivers precise results with a nearly coarse mesh, a mesh refinement technique is coupled to the solution process for obtaining a suitable mesh particularly in the high‐gradient zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Difficulties for the conventional computational fluid dynamics and the standard lattice Boltzmann method (LBM) to study the gas oscillating patterns in a resonator have been discussed. In light of the recent progresses in the LBM world, we are now able to deal with the compressibility and non‐linear shock wave effects in the resonator. A lattice Boltzmann model for viscid compressible flows is introduced firstly. Then, the Boltzmann equation with the Bhatnagar–Gross–Krook approximation is solved by the finite‐difference method with a third‐order implicit–explicit (IMEX) Runge–Kutta scheme for time discretization, and a fifth‐order weighted essentially non‐oscillatory (WENO) scheme for space discretization. Numerical results obtained in this study agree quantitatively with both experimental data available and those using conventional numerical methods. Moreover, with the IMEX finite‐difference LBM (FDLBM), the computational convergence rate can be significantly improved compared with the previous FDLBM and standard LBM. This study can also be applied for simulating some more complex phenomena in a thermoacoustics engine. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号