首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

2.
A novel monolithic stationary phase with mixed mode of hydrophilic and strong anion exchange (SAX) interactions based on in situ copolymerization of pentaerythritol triacrylate (PETA), N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (DMMSA) and a selected quaternary amine acrylic monomer was designed as a multifunctional separation column for CEC. Although the zwitterionic functionalities of DMMSA and hydroxy groups of PETA on the surface of the monolithic stationary phase functioned as the hydrophilic interaction (HI) sites, the quaternary amine acrylic monomer was introduced to control the magnitude of the EOF and provide the SAX sites at the same time. Three different quaternary amine acrylic monomers were tested to achieve maximum EOF velocity and highest plate count. The fabrication of the zwitterionic monolith (designated as HI and SAX stationary phase) was carried out when [2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate was used as the quaternary amine acrylic monomer. The separation mechanism of the monolithic column was discussed in detail. For charged analytes, a mixed mode of HI and SAX was observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(PETA‐co‐DMMSA‐co‐[2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate) monolithic column. The optimized monolith showed good separation performance for a range of polar analytes including nucleotides, nucleic acid bases and nucleosides, phenols, estrogens and small peptides. The column efficiencies greater than 192 000 theoretical plates/m for estriol and 135 000 theoretical plates/m for charged cytidine were obtained.  相似文献   

3.
Shi ZG  Feng YQ  Xu L  Zhang M  Da SL 《Talanta》2004,63(3):593-598
Silica monoliths were fabricated inside fused-silica capillaries. Then the monolithic columns were coated with membrane-like zirconia. The zirconia-coated silica monoliths exhibited different EOF behavior comparing with that of bare silica monoliths. The magnitude and direction could be manipulated by changing the running buffers. Due to the amphoteric characteristic of zirconia, the silica monoliths with zirconia surface facilitate the separation of basic compounds. Aromatic amines and alkaloids were separated without obvious peak tailing. The zirconia surface was easily modified with octadecylphosphonic acid for the separation of neutral compounds. Column efficiency as high as 90,000 and 80,000 m−1 was obtained for beberine and naphthalene, respectively. Furthermore, the zirconia coating increased the stability of the monolithic columns. Even after being exposed to severe condition, there was no apparently efficiency decrease for the test samples.  相似文献   

4.
A novel polymethacrylate‐based monolithic column with covalently bonded zwitterionic functional groups was prepared by in situ copolymerization of N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (SPE), pentaerythritol triacrylate (PETA), and vinylsulfonic acid (VS) in a binary porogenic solvent consisting of cyclohexanol and ethylene glycol. This monolith was developed as a separation column for CEC. While SPE functioned as both an electrostatic interaction stationary phase and the polar ligand provider, VS was employed to generate EOF. PETA, which has much more hydrophilicity due to a hydroxyl sub‐layer, was used to replace ethylene dimethacrylate as a cross‐linker. The monolith provided an adequate EOF when VS level was maintained at 0.6% w/w. Different monolithic stationary phases were easily prepared by adjusting the ratio of PETA/SPE in the polymerization solution as well as the composition of the porogenic solvent. The observed RSD were ≤3.6, ≤4.3 and ≤5.6% for the EOF velocity, retention time, and column efficiency, respectively. The column efficiencies greater than 145 000 theoretical plates/m for thiourea and 132 000 theoretical plates/m for charged cytidine were obtained. The poly(SPE‐co‐PETA‐co‐VS) monolith showed good selectivity for neutral and charged polar analytes. It was found that the separation mechanism of charged polar solutes was attributed to a mixed mode of hydrophilic interaction and electrostatic interaction, as well as electrophoresis. No peak tailing was observed for the separation of basic compounds, such as basic nucleic acid bases and nucleoside on the monolith.  相似文献   

5.
Wei J  Gu X  Wang Y  Wu Y  Yan C 《Electrophoresis》2011,32(2):230-237
A novel on-line 2-D system was developed for peptide and protein mapping. The system combines capillary IEF (cIEF) with pressurized CEC (pCEC) using a micro-injection valve as the interface. Sample fractions, which were focused and separated in the first-dimension cIEF based on their differences in pIs, were electrically mobilized and further successively resolved by their differences in size, hydrophobicity, and electrophoretic mobility in the second-dimension pCEC. In the presented system, the valve interface was free of the external electric field in two dimensions for the purpose of stabilization, safety, and facilitating manipulation. In the first dimension, cIEF separation was executed by a one-step method to simplify the operation procedure. Moreover, a home-made electrical decoupler was introduced to isolate the micro-injection valve from the cIEF electric field. For the second dimension, taking advantage of the combination of hydrodynamic flow with EOF, reversed-phase pCEC not only offers on-column refocusing the effluent fractions, but also brings enhanced separation resolution and elution speed. Separation effectiveness of this 2-D system was demonstrated by the analysis of tryptic digest of BSA and human red blood cell lysate. A theoretical peak capacity of approximately 24,000 has been achieved for BSA digest, which proves its promising potential for the application in proteomics.  相似文献   

6.
Several chiral drugs, promethazine, carteolol, celiprolol, and albuterol, were resolved with vancomycin as the chiral stationary phase by pressurized capillary electrochromatography (pressurized CEC) and capillary HPLC. The effects of pressure and electrical field strength on efficiency, resolution, and capacity factor in pressurized CEC were investigated. A mathematical model describing the relationship of capacity factor in pressurized CEC with voltage, pressurized flow velocity, electroosmotic mobility, and electrophoretic mobility was established, which was in good agreement with the experimental data.  相似文献   

7.
Molecularly imprinted polymer (MIP) monoliths with (S)‐ornidazole ((S)‐ONZ) as the template molecule have been designed and prepared by the simple thermal polymerization of methacrylic acid, 4‐vinylpyridine, and ethylene dimethacrylate in the presence of a binary porogenic mixture of toluene and dodecanol. The influences of polymerization mixture composition on the chiral recognition of ONZ have been evaluated, and the imprint effect in the optimized MIP monolith has been clearly demonstrated. The new monolithic stationary phase with optimized porous property and good selectivity was used for the chiral separation of ONZ by pressurized CEC. The pressurized CEC conditions were also optimized to obtain the good chiral separation. The enantiomers were rapidly separated within 9 min on the MIP‐based chiral stationary phase, whereas the chiral separation was not obtained on the nonimprinted polymer. Additionally, the proposed method has been successfully applied to the chiral separation of ONZ in tablet samples by injection of the crude sample. The cross‐selectivity for similar antiparasitic drug was investigated. The results indicated that the chiral separation of secnidazole could also be obtained on the optimized MIP monolith within 14 min.  相似文献   

8.
In this paper, a molecularly imprinted polymer (MIP) coating grafted to a trimethylolpropane trimethacrylate (TRIM) core material for CEC was reported. The core monolith was prepared with a solution of 20% (w/w) TRIM in a mixture of porogen and a polymerization precursor, which can generate a stable electroosmotic flow due to the formation of ionizable groups after postpolymerization hydrolization. Graft polymerization took place on the resultant TRIM monolith with a mixture of template, methacrylic acid, and ethylene glycol dimethacrylate. Strong recognition ability (selectivity factor was 5.83) for S‐amlodipine and resolution of enatiomers separation (up to 7.99) were obtained on the resulting grafted imprinted monolith in CEC mode. The influence of CEC conditions on chiral separation, including the composition of mobile phase, pH value, and the operating voltages was studied. These results suggest that the method of grafted polymerization reported here allows a rapid development of MIP monolith once core materials with desired properties are available, and is a good alternative to prepare CEC‐based monolithic MIPs.  相似文献   

9.
Qu Q  Lu X  Huang X  Hu X  Zhang Y  Yan C 《Electrophoresis》2006,27(20):3981-3987
Nonporous silica spheres (1 microm) were synthesized and bonded with octadecylsilane functionality. These stationary phase particles were packed electrokinetically into fused-silica capillaries with 100 microm id for a length of 20 cm, which was evaluated by using pressurized CEC (pCEC). The efficiency of the C18 RP column was characterized through the theoretical plates of thiourea, benzyl alcohol, toluene, styrene, and naphthalene. The effects of experimental parameters such as the applied voltage, sample size, pump flow rate, pH value and the concentration of the buffer solution, and the content of methanol in the mobile phase, on-column efficiency were evaluated. Column efficiency as high as 200 000 theoretical plates per meter for naphthalene was obtained with the optimal condition of 70% v/v methanol and 30% v/v of 10 mmol/L phosphate buffer (pH 7.8) at an applied voltage of 10 kV and a supplementary pressure of 500 psi.  相似文献   

10.
Summary The dual separation mechanism exhibited by capillary electrochromatography is demonstrated by the simultaneous separation of sulfonamides as charged and neutral species over a pH range of 2.5 to 6.9. The neutral sulfonamides were separated according to the difference in their hydrophobicities while charged components were separated by the differences in their electrophoretic mobilities. The limitation of capillary electrochromatography for acidic components was also examined.  相似文献   

11.
Lin Z  Lin J  Wu X  Lin X  Xie Z 《Electrophoresis》2008,29(2):401-409
A system of off-column coaxial flow chemiluminescence (CL) detection coupled to pressurized CEC (pCEC) was described. The interface utilized a reactor that introduced postcolumn CL reagent into the capillary effluents in a sheathing flow profile. To compare and evaluate band broadening of analytes caused by the detector, the typical CL compounds luminol and N-(4-aminobutyl)-N-ethylisoluminol (ABEI) were separated and detected by pCEC or capillary HPLC (cHPLC) coupled to CL and UV detector, respectively. The results demonstrated that the band broadening caused by off-column detection interface was minimized due to the fast kinetic nature of the CL reaction. With the proposed pCEC-CL system, the detection limits of luminol and ABEI were 1.0x10(-8) and 8.0x10(-8) mol/L, respectively, which were approximately 100-fold more sensitive than those obtained with UV absorption. In addition, separation and detection of the ABEI-labeled L-lysine (L-Lys) and L-arginine (L-Arg) were accomplished by pCEC-CL method based on the principle of ABEI-potassium ferricyanide-alkaline medium CL reaction system. Under the optimum conditions, good results could be achieved compared with pCEC-UV.  相似文献   

12.
Okanda FM  El Rassi Z 《Electrophoresis》2005,26(10):1988-1995
A neutral, nonpolar monolithic capillary column having a relatively strong electroosmotic flow (EOF) yet free of electrostatic interactions with charged solutes was developed for the reversed-phase capillary electrochromatography (RP-CEC) of neutral and charged species including peptides and proteins. The neutral nonpolar monolith is based on the in situ polymerization of pentaerythritol diacrylate monostearate (PEDAS) in a ternary porogenic solvent composed of cyclohexanol, ethylene glycol, and water. PEDAS plays the role of both the cross-linker and the ligand provider, generating a macroporous nonpolar monolith having C17 chains as the chromatographic ligands. Despite the fact that the neutral PEDAS monolith is devoid of fixed charges, the monolithic capillary columns exhibited a relatively strong EOF due to the ability of PEDAS to adsorb sufficient amounts of electrolyte ions from the mobile phase. The adsorbed ions imparted the neutral PEDAS monolith the zeta potential necessary to support the EOF required for mass transport across the monolithic column. The absence of fixed charges on the surface of the neutral PEDAS monolith and in turn the adsorption sites for electrostatic attraction of charged solutes allowed the rapid and efficient separations of proteins and peptides at pH 7.0, with an average plate number of 255,000 and 121,000 plates/m, respectively. To the best of our knowledge, this constitutes the first report on the separation of proteins at neutral pH by RP-CEC using a neutral monolithic column.  相似文献   

13.
Tian Y  Feng R  Liao L  Liu H  Chen H  Zeng Z 《Electrophoresis》2008,29(15):3153-3159
An ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was introduced as dynamic coating of a silica monolithic column for capillary electrochromatography of phenols and nucleoside monophosphates. The run-to-run and column-to-column repeatability of migration time for six phenols were satisfactory on this column with relative standard deviation values less than 0.90 and 4.31%, respectively. Anodic electroosmotic flow (EOF) was observed, which increased with the increase of [BMIM][BF4] concentration within 120 mM and when [BMIM][BF4] concentration was above 120 mM, EOF leveled off due to the saturation of [BMIM][BF4] on the monolith. Efficient separation of phenols and nucleoside monophosphates on this dynamically coated monolithic column was obtained, compared with a dynamically coated fused-silica column and unmodified silica monolithic column. The retention behavior of uncharged phenols is mainly manipulated by hydrophobic interactions due to the presence of butyl groups, and that of nucleoside monophosphates is governed by the electrostatic attraction mechanism based on the interaction between positively charged [BMIM][BF4] moieties and negatively charged phosphate groups. In addition, silica matrix also contributes to the separation resolution.  相似文献   

14.
Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.  相似文献   

15.
Huang G  Lian Q  Zeng W  Xie Z 《Electrophoresis》2008,29(18):3896-3904
A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.  相似文献   

16.
Y Li  Y Chen  K Wang  L Nie  S Yao 《Electrophoresis》2012,33(13):2005-2011
One-pot synthesis of porous polymer monolith decorated with N-methylimidazolium in a capillary was described. The polymer matrix was synthesized by in situ copolymerization and quaterization of 3-chloro-2-hydroxylpropyl methacrylate (CHPMA), ethylene dimethacrylate (EDMA), and N-methylimidazole (N-MIz). The influencing factors including amount of cross-linkers, composition of porogenic solvents, and polymerization temperature on the formation of the monolithic column were investigated. The monolithic column exhibited high column efficiency for thiourea, up to 135 000 plates per meter, and phenylmethanol, up to 102 000 plates per meter. Different types of compounds including alkylbenzenes, phenols, and inorganic anions were successfully baseline separated by capillary electrochromatography (CEC). The separation of theses analytes on the column indicated typical reversed-phase and anion-exchange chromatographic retention mechanism.  相似文献   

17.
A porous zwitterionic monolith was prepared by in situ covalent attachment of lysine to a γ‐glycidoxypropyltrimethosysilane‐modified silica monolith. The prepared column was used to perform neutral and ionized solutes separations by pressurized (pCEC). Due to the zwitterionic nature of the resulting stationary phase, the monolithic column provided both electrostatic attraction and repulsion sites for electrochromatographic retention for ionized solutes. Separation of several nucleotides was investigated on the monolithic column. It was shown that the nucleotides could be separated based on hydrophilic and electrostatic interactions between the stationary phase and analyte. Besides, the separation property of the zwitterionic silica monolith was compared with the use of diamine‐bonded silica monolith as stationary phase. As expected, the lysine monolith exhibited a lower retention for the five nucleotides, which was due to the dissociation of the external carboxylic acid groups, leading to electrostatic repulsion with negatively charged solutes. Under the same experimental conditions, separation of the five nucleotides on the zwitterionic column was in less than 8 min, while that on the diamine column was in approximately 60 min.  相似文献   

18.
Summary The sweeping concept is extended to capillary zone electrophoresis (CZE) separation of neutral solutes involving complexation with borate. Analogous to the pseudostationary phase in electrokinetic chromatography (EKC), the complexing agent (borate) serves as carrier for sweeping and separation in CZE. Therefore, similar to the retention factor in EKC, the focusing effect in the present system is directly related to the association constant between the analyte and complexing agent. Theoretical and some preliminary experimental studies gerenally suggest that the electrophoretic mobility of the complex and the concentration of the complexing agent affect the resulting length of narrowed zones. Moreover, sweeping using borate is affected by pH since borate complexation is pH dependent. From around 10 to 40-fold improvement in peak heights has been observed experimentally for some neutral test analytes (monosaccharides, catechols, and nucleosides)  相似文献   

19.
A pressurized CEC (pCEC) method with postcolumn detection cell had been developed for quantifying the lignans from Fructus schisandrae extracts. The effects of different experimental conditions, such as the ACN content of the mobile phase, the concentration and pH of the buffer, the applied voltage, and the supplementary pressure were studied. Five lignans (schisandrin, gomisin A, schisantherin C, deoxyschizandrin, schisandrin B) were baseline separated using a mobile phase of ACN-phosphate buffer (pH 5.4; 5 mM) (40:60 v/v) under -4 kV applied voltage. The method showed the satisfactory retention time and peak area repeatability. The calibration curves were linear in the range 50.0-1000.0 microg/mL for schisandrin, 20.0-500.0 microg/mL for gomisin A, 10.0-200.0 microg/mL for schisantherin C, 20.0-500.0 microg/mL for deoxyschizandrin, and 20.0-500.0 microg/mL for schisandrin B. The correlation coefficients were between 0.9978 and 0.9989. With this pCEC system, fingerprints of F. schisandrae were preliminarily established to distinguish two members S. chinensis (Turcz.) Baill. and S. sphenanthera Rehd. Et Wils. of F. schisandrae by characteristic peaks, and evaluate the quality of various sources of raw materials by determining the contents of the five lignans.  相似文献   

20.
A pressurized CEC (pCEC) coupled with on-column chemiluminescence (CL) detection was developed for direct determination of amino acids, which was based on the principle of an enhanced effect of Cu(II)-amino acid complexes on the CL reaction between luminol and hydrogen peroxide in alkaline solution. The effects of some important factors on pCEC separation and CL intensity were systemically investigated. Baseline separation of amino acids including L-histidine (L-His), L-threonine (L-Thr), and L-tyrosine (L-Tyr) was achieved by using a monolithic column with a mobile phase of 5.0x10(-3) mol/L phosphate buffer at pH 8.0 that contained 25% v/v methanol and 5.0x10(-4) mol/L luminol and 1.0x10(-5) mol/L Cu(II) at an applied voltage of -5 kV. The calibration curves of the analytes by plotting the peak height against corresponding concentration were linear over the range of 3.2x10(-6)-3.2x10(-4) mol/L for L-His, 4.1x10(-6)-4.1x10(-4) mol/L for L-Thr, and 6.0x10(-7)-3.0x10(-4) mol/L for L-Tyr. The LODs for L-His, L-Thr, and L-Tyr were 6.4x10(-7), 8.4x10(-7), and 3.0x10(-7) mol/L (S/N = 2), respectively. The proposed method was applied to the analysis of amino acid injection sample with satisfactory results. Mean recoveries for three amino acids were from 84.3 to 89.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号