首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using probabilistic tools, we give tight upper and lower bounds for the Kirchhoff index of any d‐regular N‐vertex graph in terms of d, N, and the spectral gap of the transition probability matrix associated to the random walk on the graph. We then use bounds of the spectral gap of more specialized graphs, available in the literature, in order to obtain upper bounds for the Kirchhoff index of these specialized graphs. As a byproduct, we obtain a closed‐form formula for the Kirchhoff index of the d‐dimensional cube in terms of the first inverse moment of a positive binomial variable. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
Photocages have been used to elucidate the biological functions of various small molecules and Ca2+; however, there are very few photocages available for other metal ions. ZinCleav‐2 (1‐(4,5‐dimethoxy‐2‐nitrophenyl)‐N,N,N′,N′‐tetrakis‐pyridin‐2‐ylmethyl‐ethane‐1,2‐diamine) is a second‐generation photocage for Zn2+ that releases the metal ion after a light‐induced bifurcation of the chelating ligand. The structure of ZinCleav‐2 was inspired by TPEN (N,N,N′,N′‐tetrakis(2‐pyridylmethyl)ethylenediamine), which is routinely used to sequester metal ions in cells owing to its high binding affinity. Inclusion of a 2‐nitrobenzyl chromophore leads to the formation of two more weakly binding di‐(2‐picolyl)amine (DPA) fragments upon photolysis of the TPEN backbone. The desired ligand was prepared using a modified procedure used to access ZinCleav‐1 (1‐(4,5‐dimethoxy‐2‐nitrophenyl)‐N,N′‐dimethyl‐N,N′‐bis‐pyridin‐2‐ylmethyl‐ethane‐1,2‐diamine). ZinCleav‐2 has a conditional dissociation constant (Kd) of ~0.9 fM as measured by competitive titration with a quinoline‐based fluorescent sensor for Zn2+. The Kd of the Zn2+ complex of the DPA photoproducts is ~158 nM ; therefore, the ΔKd for ZinCleav‐2 photocage is ~108. A large ΔKd is required to significantly perturb free metal ion concentrations in biological assays. The quantum yield of photolysis of apo ZinCleav‐2 and the [Zn(ZinCleav‐2)]2+ complex are 4.7 and 2.3 %, respectively, as determined by HPLC analysis. Proof of concept Zn2+ release upon photolysis of [Zn(ZinCleav‐2)]2+ was demonstrated using the fluorescent sensor Zinpyr‐1, and the speciation of Zn2+ complexes was simulated using computational methods. The influence of benzylic substituents on the quantum yield of uncaging is also analyzed with the aim of tuning the photochemical properties caged complexes for in vivo experiments.  相似文献   

3.
The reaction of 2‐amino‐4,5‐dimethyl‐ thiophene‐3‐carboxamide with iso(and isothio) cyanates for the synthesis of thieno[2,3‐d]pyrimidines has been investigated. The reactions under microwave irradiation in the presence of N,N‐dimethyl acetamide as solvent gave 5,6‐dimethylthieno[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, 5,6‐dimethyl‐2‐thioxo‐2,3‐dihy‐ drothieno[2,3‐d]pyrimidin‐4(1H)‐one, and 2‐aryla‐ mino‐5,6‐dimethylthieno[2,3‐d]pyrimidin‐4(3H)‐one derivatives. These reactions probably proceed through intermediates 4,5‐dimethyl‐2‐substitutedcarbamoth‐ ioylaminothiophene‐3‐carboxamides. Two of these intermediates were isolated. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:346–349, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20557  相似文献   

4.
A useful and rapid access to libraries of N‐arylbenzo[b]furo[3,2‐d]pyrimidin‐4‐amines ( 1 ) and their novel benzo[b]thieno[3,2‐d]pyrimidin‐4‐amine analogues ( 2 ) was investigated for the first time. Title compounds were obtained via microwave‐accelerated condensation and Dimroth rearrangement of suitable anilines with N′‐(2‐cyanaryl)‐N,N‐dimethylformimidamides obtained by reaction of benzo[b]furane and benzo[b]thiophene precursors with N,N‐dimethylformamide dimethyl acetal. This work also demonstrates that well‐controlled parameters offer comfortable use of microwave technology and are both safe and beneficial to the environment. Some products obtained in this article exhibit interesting in vitro antiproliferative effects.  相似文献   

5.
Summary: The range of validity of two popular versions of the nitroxide quasi‐equilibrium (NQE) approximation used in the theory of kinetics of alkoxyamine mediated styrene polymerization, are systematically tested by simulation comparing the approximate and exact solutions of the equations describing the system. The validity of the different versions of the NQE approximation is analyzed in terms of the relative magnitude of (dN/dt)/(dP/dt). The approximation with a rigorous NQE, kc[P][N] = kd[PN], where P, N and PN are living, nitroxide radicals and dormant species respectively, with kinetic constants kc and kd, is found valid only for small values of the equilibrium constant K (10−11–10−12 mol · L−1) and its validity is found to depend strongly of the value of K. On the other hand, the relaxed NQE approximation of Fischer and Fukuda, kc[P][N] = kd[PN]0 was found to be remarkably good up to values of K around 10−8 mol · L−1. This upper bound is numerically found to be 2–3 orders of magnitude smaller than the theoretical one given by Fischer. The relaxed NQE is a better one due to the fact that it never completely neglects dN/dt. It is found that the difference between these approximations lies essentially in the number of significant figures taken for the approximation; still this subtle difference results in dramatic changes in the predicted course of the reaction. Some results confirm previous findings, but a deeper understanding of the physico‐chemical phenomena and their mathematical representation and another viewpoint of the theory is offered. Additionally, experiments and simulations indicate that polymerization rate data alone are not reliable to estimate the value of K, as recently suggested.

Validity of the rigorous nitroxide quasi‐equilibrium assumption as a function of the nitroxide equilibrium constant.  相似文献   


6.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

7.
2‐N‐Acetyl‐4‐O‐(β‐d‐galactopyranosyl)‐d‐glucosamine (N‐acetyl‐d‐lactosamine), a very important building block of biologically relevant oligosaccharides such as sialyl Lewisx, is easily accessible via the Heyns rearrangement of the corresponding O‐glycosylated ketohexose, d‐lactulose. This approach can also be extended to other glucosamine derivatives employing suitable O‐glycosylated ketoses many of which are commercially available. For example, nigerosamine (3‐O‐α‐d‐glucopyranosyl‐d‐glucosamine) was prepared from turanose (3‐O‐α‐d‐glucopyranosyl‐d‐fructose). In combination with a recently introduced vinylogous amide type N‐protecting group, [1,3‐dimethyl‐2, 4, 6 (1H, 3H, 5H)‐trioxopyrimidine‐5‐ylidene] methyl (DTPM), this access is clearly superior to other routes and eminently suitable for scaling up.  相似文献   

8.
A method for the synthesis and purification of a homologous series of symmetrical diamido‐diacids derived from d‐glucaric acid and six alkylenediamines is described. Treating d‐glucaro‐6,3‐lactone with an equimolar amount of lithium acetate dihydrate yielded lithium d‐glucarate‐6,3‐lactone, which in turn was reacted with six alkylenediamines in dimethyl sulfoxide to give the target diamido‐diacids. Six new alternating stereoregular polyamides, head, tailtail, head‐poly(alkylene d‐glucaramides), were then synthesized by simple polycondensation reactions between the activated diamido‐diacids [6,6′‐(N,N′‐alkylene)‐bis(d‐glucaramid‐1‐oic acid)s] and the alkylenediamines. Number average molecular weights for the polyamides were estimated by 1H NMR end group analysis. Models for the three‐dimensional shape of these alternating stereoregular polymers were produced from a combination of 1H NMR data, molecular modeling studies performed on d‐glucaramide, and crystal structures of various acyclic d‐glucaric acid derivatives.  相似文献   

9.
The crystal structures of 1‐{5‐[4,6‐bis­(methyl­sulfanyl)‐2H‐py­razolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐6‐methyl­sulfanyl‐4‐(pyr­rolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C22H29N9S3, and 6‐methyl­sulfanyl‐1‐{5‐[6‐methyl­sulfanyl‐4‐(pyrrolidin‐1‐yl)‐2H‐pyrazolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐4‐(pyrrolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C25H34N10S2, which differ in having either a pyrrolidine substituent or a methylsulfanyl group, show intermolecular stacking due to aromatic π–π interactions between the pyrazolo­[3,4‐d]­pyrimidine rings.  相似文献   

10.
A concise and efficient synthesis of a series of amino‐substituted benzimidazole–pyrimidine hybrids has been developed, starting from the readily available N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. In each of N5‐benzyl‐6‐methoxy‐4‐(2‐phenyl‐1H‐benzo[d]imidazol‐1‐yl)pyrimidine‐2,5‐diamine, C25H22N6O, (I), 6‐methoxy‐N5‐(4‐methoxybenzyl)‐4‐[2‐(4‐methoxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C27H26N6O3, (III), 6‐methoxy‐N5‐(4‐nitrobenzyl)‐4‐[2‐(4‐nitrophenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C25H20N8O5, (IV), the molecules are linked into three‐dimensional framework structures, using different combinations of N—H…N, N—H…O, C—H…O, C—H…N and C—H…π hydrogen bonds in each case. Oxidative cleavage of 6‐methoxy‐N5‐(4‐methylbenzyl)‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, (II), with diiodine gave 6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, which crystallized as a monohydrate, C19H18N6O·H2O, (V), and reaction of (V) with trifluoroacetic acid gave two isomeric products, namely N‐{5‐amino‐6‐methoxy‐6‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐2‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as an ethyl acetate monosolvate, C21H17F3N6O2·C4H8O2, (VI), and N‐{2‐amino‐6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐5‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as a methanol monosolvate, C21H17F3N6O2·CH4O, (VIIa). For each of (V), (VI) and (VIIa), the supramolecular assembly is two‐dimensional, based on different combinations of O—H…N, N—H…O, N—H…N, C—H…O and C—H…π hydrogen bonds in each case. Comparisons are made with some related structures.  相似文献   

11.
《合成通讯》2013,43(7):1301-1308
Abstract

N‐Alkyl (Me, Et, i‐Pr, t‐Bu)‐substituted phthalimdes 5a–d were easily transformed to 1(2H)‐phthalazinones 8d–i and 2,3‐benzoxazin‐1‐ones 9d, f, and j via a one‐pot addition–decyclization–cyclocondensation process.  相似文献   

12.
A reaction system was found to prepare tetra‐O‐acetyl‐1‐thio‐d‐glycopyranose in both α and β‐forms. Methanolysis of the adduct prepared from the reaction of tetra‐O‐acetyl‐α‐d‐glucopyranosyl bromide with N,N‐dimethylthioformamide afforded the corresponding tetra‐O‐acetyl‐1‐thio‐d‐glucopyranose with an anomer ratio α/β of 52:48 in 98% yield. The anomer mixture was easily separated by column chromatography to obtain the product of α‐form. This synthetic method is very convenient to proceed by one‐pot reaction under ordinary conditions.  相似文献   

13.
Pyranose oxidase (pyranose:O2 2‐oxidoreductase, EC 1.1.3.10) purified from mycelia of the basidiomycete fungi Trametes versicolor and Oudemansiella mucida catalyzed oxidation of d‐galactose successively at C‐2 and C‐3 to dthreo‐hexos‐2,3‐diulose (2,3‐dehydro‐d‐galactose, 2,3‐diketo‐d‐galactose) in the yields up to 80%. The sites of oxidation were deduced from structures of the N,N‐diphenylhydrazone derivatives of the reaction products. Under the reaction conditions used, the diulose was susceptible to non‐enzymatic oxidative decarboxylation to dthreo‐pentos‐2‐ulose (2‐dehydro‐d‐xylose, 2‐keto‐d‐xylose) in yields of 5–10%.  相似文献   

14.
A model building approach was used in conjunction with the MM3 molecular mechanics program to find the low‐energy conformations of three tetra‐O‐acyl‐N,N′‐dimethyl‐d‐glucaramide molecules: tetra‐O‐propanoyl‐(2), 2‐methylpropanoyl‐(3) and 2,2‐dimethylpropanoyl‐N,N′‐dimethyl‐d‐glucaramide (4), and tetra‐O‐acetyl‐N,N′‐dihexyl‐d‐glucaramide (5). A set of models was chosen for calculation of the low‐energy conformations of parent tetra‐O‐acetyl‐N,N′‐dimethyl‐d‐glucaramide (1), with additional models required to simulate conformationally more complex diamides 25. The dominant low‐energy conformations of 2 and 3 were very similar to that from 1, whereas very sterically constrained 4, with four bulky pendant O‐2,2‐dimethylpropanoyl groups, and 5, with terminal n‐hexyl groups, adopted different conformations. Stereoregular alternating head tail–tail head and repeating head tail–poly(hexamethylene 2,3,4,5‐tetra‐O‐acetyl‐D‐glucaramide) oligomers were graphically generated to provide some insight into the possible conformations of the actual acylated polyamides in nonpolar solution.  相似文献   

15.
Phase behaviour of nematic liquid crystals (N‐(p‐ethoxybenzylidene)‐p‐butylaniline and N‐(p‐methoxybenzylidene)‐p‐butylaniline) in linear polystyrene are investigated by thermo‐optical analysis. Results are compared to the model based on the extended Flory‐Huggins equation. The model used in this work includes two adjustable model parameters (d0, d1). The proposed semi‐empirical model gives a very good agreement with new data obtained for liquid crystal and polystyrene systems.  相似文献   

16.
The butylidene‐linker models 1‐[2‐(2,6‐dimethylsulfanyl‐9H‐purin‐9‐yl)‐2‐methylidenepropyl]‐4,6‐bis(methylsulfanyl)‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H20N8S4, (XI), 7,7′‐(2‐methylidenepropane‐1,3‐diyl)bis[3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one], C20H22N6O2S2, (XIV), and 7‐[2‐(4,6‐dimethylsulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐2‐methylidenepropyl]‐3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one, C19H21N7OS3, (XV), show folded conformations in solution, as shown by 1H NMR analysis. This folding carries over to the crystalline state. Intramolecular π–π interactions are observed in all three compounds, but only (XIV) shows additional intramolecular C—H...π interactions in the solid state. As far as can be established, this is the first report incorporating the pyrrolo[2,3‐d]pyrimidine nucleus for such a study. In addition to the π–π interactions, the crystal structures are also stabilized by other weak intermolecular C—H...S/N/O and/or S...N/S interactions.  相似文献   

17.
In bis­(1,2‐ethanedi­amine‐N,N′)­bis­[tri­iodo(1?)‐I]copper, [Cu(I3)2­(C2H8N2)2], the triiodide anions form chains parallel to [001]. The central metal ion (site symmetry 2/m) of the complex cation is coordinated to four N atoms and to two I atoms. The geometry of the square‐bipyramidal complex is as expected, with d(Cu—N) = 2.006 (5) and d(Cu—I) = 3.3600 (9) Å.  相似文献   

18.
In the crystal structures of 4,6‐di­methyl­thio‐1‐[3‐(4,6‐di­methyl­thio‐2H‐pyra­zolo­[3,4‐d]­py­rimi­din‐2‐yl)­propyl]‐1H‐py­ra­­zolo­[3,4‐d]­py­rimi­dine, C17H20N8S4, and 1‐[4‐(4‐meth­oxy‐6‐methyl­thio‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐1‐yl)­butyl]‐5‐meth­yl‐6‐methyl­thio‐4,5‐di­hydro‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐4‐one, C18H22N8O2S2, only intermolecular stacking due to aromatic π–π interactions between pyrazolo­[3,4‐d]­pyrimidinerings is present.  相似文献   

19.
Molecules of 1,3‐dimethyl‐7‐(4‐methylphenyl)pyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C16H15N3O2, (I), are linked by paired C—H...O hydrogen bonds to form centrosymmetric R22(10) dimers, which are linked into chains by a single π–π stacking interaction. A single C—H...O hydrogen bond links the molecules of 7‐(biphenyl‐4‐yl)‐1,3‐dimethylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C21H17N3O2, (II), into C(10) chains, which are weakly linked into sheets by a π–π stacking interaction. In 7‐(4‐fluorophenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C14H10FN3O2, (III), an N—H...O hydrogen bond links the molecules into C(6) chains, which are linked into sheets by a π–π stacking interaction. The molecules of 7‐(4‐methoxyphenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C15H13N3O3, (IV), are also linked into C(6) chains by an N—H...O hydrogen bond, but here the chains are linked into sheets by a combination of two independent C—H...π(arene) hydrogen bonds.  相似文献   

20.
In the crystal structure of 1,3‐bis(4,6‐diiso­propyl­sulfanyl‐1H‐pyrazolo­[3,4‐d]­pyrimidin‐1‐yl)­propane, C25H36N8S4, the pairs of pyrazolo­[3,4‐d]­pyrimidine rings in the mol­ecule stack as a result of intramolecular π–π interactions between the heterocyclic rings. The crystal packing also exhibits an intermolecular C—H...π interaction between one methyl group of an iso­propyl group and a pyrazolo­[3,4‐d]­pyrimidine ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号