首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The minimum energy path (MEP) of the reaction, CF3CHFCF3 + H → transition state (TS) → CF3CFCF3 + H2, has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6‐31++G**, BH&HLYP/cc‐pVDZ, BMK/6‐31++G**, M05/6‐31+G**, M05‐2X/6‐31+G**, UMP2/6‐31++G**, PUMP2/6‐31++G**//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVDZ//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVTZ(spd,sp)//UMP2//6‐31++G**, RCCSD(T)/CBS//M05/6‐31+G**, and RCCSD(T)/CBS//UMP2/6‐31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero‐curvature, and small‐curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000–1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6‐31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The singlet and triplet potential energy surfaces involved in N++SH2 reactions have been explored using high‐level ab initio techniques. The geometries of the stationary points were optimized at the QCISD/6‐311G(df,p) level. The final energies were obtained in CCSD(T)/6‐311+G(3df,2p) single‐point calculations. The results obtained show that, although the N+(1D)+SH2 entrance channel is higher in energy than the N+(3P)+SH2 one, most of the [H2, S, N]+ singlet state cations are lower in energy than the corresponding triplets, due to their different bonding characteristics. Both singlet and triplet potential energy surfaces are quite close each other, and crossover between them can occur. The minimum energy crossing points were located by means of CASSCF(6,5) calculations. The spin‐orbit couplings show that the transition probability from the triplet to the singlet potential energy surface is significantly large. One of the most important consequences is that some of the products of the reaction, such as SH+, can be formed in typical spin‐forbidden processes. Since all the relevant structures along these pathways are much lower in energy than the reactants, this mechanism should be accessible even at low impact energies and therefore could be important in processes taking place in interstellar media. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

3.
The intermolecular interaction energies of the CH3OCH3? CH4, CF3OCH3? CH4, and CF3OCF3? CH4 systems were calculated by ab initio molecular orbital method with the electron correlation correction at the second order Møller–Plesset perturbation (MP2) method. The interaction energies of 10 orientations of complexes were calculated for each system. The largest interaction energies calculated for the three systems are ?1.06, ?0.70, and ?0.80 kcal/mol, respectively. The inclusion of electron correlation increases the attraction significantly. It gains the attraction ?1.47, ?1.19, and ?1.27 kcal/mol, respectively. The dispersion interaction is found to be the major source of the attraction in these systems. In the CH3OCH3? CH4 system, the electrostatic interaction (?0.34 kcal/mol) increases the attraction substantially, while the electrostatic energies in the other systems are not large. Fluorine substitution of the ether decreases the electrostatic interaction, and therefore, decreases the attraction. In addition the orientation dependence of the interaction energy is decreased by the substitution. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1472–1479, 2002  相似文献   

4.
Ab initio calculations of the potential energy surface of methanol have been developed for the determination of vibrational parameters and their comparison with vibrational data reported in the first part of this work. The strong resonances between the methyl bending and stretching modes, giving rise to polyads of levels Pn in the ranges 3000–2800 (P2), 4500–4250 (P3) and 6000–5600 cm−1 (P4), have been treated by solving for each polyad two Hamiltonian matrices containing off-diagonal terms including both Fermi and Darling-Dennison anharmonic contributions. These terms were calculated from the ab initio determination of the potential energy surface developed up to the quartic terms using the Möller–Plesset 2 method. The choice of the basis set was made to minimize the problem of divergence of the Darling-Dennison constants. Their determination requires however the omission of the terms in which the difference between the harmonic frequencies of the symmetrical methyl stretching and the sum of the two A′ bendings (ω3ω4ω5) appears in the denominator. Then, by adjustment of the diagonal elements of the Hamiltonian matrices, it becomes possible to propose a realistic assignment of the matrix spectra.  相似文献   

5.
6.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号