首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asymmetric Diels–Alder reaction of α‐substituted acrolein proceeds in the presence of the trifluoroacetic acid salt of trifluoromethyl‐substituted diarylprolinol silyl ether to afford the exo‐isomer with both excellent diastereoselectivity and high enantioselectivity. In the Diels–Alder reaction of a β,β‐disubstituted α,β‐unsaturated aldehyde, good exo‐selectivity and excellent enantioselectivity was obtained when the perchloric acid salt of the bulky triisopropyl silyl ether of trifluoromethyl substituted diarylprolinol was employed as an organocatalyst in the presence of water. In both cases, all‐carbon quaternary stereocenters are constructed enantioselectively.  相似文献   

2.
3.
N,N′‐Dioxide/nickel(II) complexes have been developed to catalyze the inverse‐electron‐demand hetero‐Diels–Alder reaction of β,γ‐unsaturated α‐ketoesters with acyclic enecarbamates. After detailed screening of the reaction parameters, mild optimized reaction conditions were established, affording 3,4‐dihydro‐2H‐pyranamines in up to 99 % yield, 99 % ee and more than 95:5 d.r. The catalytic system was also efficient for β‐substituted acyclic enecarbamates, affording more challenging 2,3,4‐trisubstituted 3,4‐dihydro‐2H‐pyranamine with three contiguous stereogenic centers in excellent yields, diastereoselectivities, and enantioselectivities. The reaction could be scaled up to a gram scale with no deterioration of either enantioselectivity or yield. Based on these experiments and on previous reports, a possible transition state was proposed.  相似文献   

4.
In a search for starting materials for the preparation of 7,8‐fused morphine alkaloid derivatives, 8‐[(1E‐2‐phenylethenyl]codeinone dimethyl ketal ( 4 ) and 8‐[(1E‐2‐phenylethenyl]codeine ( 5 ) were prepared. These dienes were used as substrates in the Diels–Alder reactions. Compound 5 formed the ‘normal’ adduct 12 with N‐phenylmaleimide, while compound 4 behaved in reactions with dienophiles as the ‘masked’ diene 11 , a 8‐[(1E)‐2‐phenylethenyl]‐substituted thebaine, yielding the corresponding 19‐substituted 6,14‐endo‐etheno‐6,7,8,14‐tetrahydrothebaines. Specifically, reaction of 4 with methyl vinyl ketone gave rise to 19‐[(1E)‐phenylethenyl]thevinone ( 14 ) whose structure was elucidated by an X‐ray diffraction analysis. The thebaine derivative 11 was also prepared from 4 .  相似文献   

5.
6.
The total synthesis of the noncyanogenic cyanoglucoside 1 , originally isolated from Ilex warburgii, was achieved in nine steps (9% overall yield), starting from an optically pure Diels–Alder adduct ((+)‐ 3 ). The key step of the synthesis, the glycosidation, was carried out under Koenigs–Knorr conditions closely related to those developed for the total syntheses of (?)‐lithospermoside and (?)‐bauhinin. We had to tune the protecting groups used for the two free cis‐configured OH groups of the aglycone, which afforded the desired β‐d‐ glucoside intermediate 15 in very good yield (62%).  相似文献   

7.
In a limited number of cases, 14‐alkenylcodeinones (=14‐alkenyl‐7,8‐didehydro‐4,5‐epoxy‐3‐methoxy‐17‐methylmorphinan‐6‐ones) can be obtained by formic acid treatment of thevinols (=4,5‐epoxy‐3,6‐dimethoxy‐α,17‐dimethyl‐6,14‐ethenomorphinan‐7‐methanols), but under these conditions the equivalent 14‐alkenyl‐7,8‐dihydrocodeinones undergo further rearrangement (Scheme 1 and Table). Introduction of a 5β‐methyl group allows the 18,19‐dihydrothevinol precursors to be rearranged to 14‐alkenyl‐7,8‐dihydrocodeinones, but similar manipulation of the vinylogues of these thevinols is generally unable to prevent full rearrangement to 5,14‐bridged thebainone derivatives.  相似文献   

8.
Previously unexplored enantiopure zwitterionic ammonium dienolates have been utilized in this work as reactive intermediates that act as diene components in hetero‐Diels–Alder reactions (HDAs) with aldehydes to produce optically active δ‐lactones, subunits of numerous bioactive products. The dienolates were generated in situ from E/Z mixtures of α,β‐unsaturated acid chlorides by use of a nucleophilic quinidine derivative and Sn(OTf)2 as co‐catalyst. The latter component was not directly involved in the cycloaddition step with aldehydes and simply facilitated the formation of the reactive dienolate species. The scope of the cycloaddition was considerably improved by use of a complex formed from Er(OTf)3 and a simple commercially available norephedrine‐derived ligand that tolerated a broad range of aromatic and heteroaromatic aldehydes for a cooperative bifunctional Lewis‐acid‐/Lewis‐base‐catalyzed reaction, providing α,β‐unsaturated δ‐lactones with excellent enantioselectivities. Mechanistic studies confirmed the formation of the dienolate intermediates for both catalytic systems. The active ErIII complex is most likely a monomeric species. Interestingly, all lanthanides can catalyze the title reaction, but the efficiency in terms of yield and enantioselectivity depends directly on the radius of the LnIII ion. Similarly, use of the pseudolanthanides ScIII and YIII also resulted in product formation, whereas the larger LaIII and other transition metal salts, as well as main group metal salts, proved to be inefficient. In addition, various synthetic transformations of 6‐CCl3‐ or 4‐silyl‐substituted α,β‐unsaturated δ‐lactones, giving access to a number of valuable δ‐lactone building blocks, were investigated.  相似文献   

9.
Angularly fused carbocyclic frameworks and their heteroatom‐substituted analogues exist in many natural products that display a broad and interesting range of biological activities. Preparation of polycyclic products by cycloaddition reactions have been the long‐standing hot topic in the synthetic community. Dehydro‐Diels–Alder (DDA) reactions are one class of dehydropericyclic reactions that are derived conceptually by systematic removal of hydrogen atom pairs. A base‐promoted tandem Michael addition and DDA reaction of α,α‐dicyanoolefins with electron‐deficient 1,3‐conjugated enynes was realized in which a DDA reaction takes place between the arylalkynes and electron‐deficient tetrasubstituted olefin. The control experiments support the stepwise anionic reaction pathway rather than the concerted reaction pathway.  相似文献   

10.
Reactions of biacetyl (=butane‐2,3‐dione) with (N‐isocyanimino)triphenylphosphorane in the presence of aromatic carboxylic acids proceed smoothly at room temperature and under neutral conditions to afford 3‐(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)‐3‐hydroxybutan‐2‐one derivatives in high yields.  相似文献   

11.
A highly diastereoselective and practical biomimetic total synthesis of (±)‐basiliolide B has been achieved through the study of the two proposed biosynthetic pathways (O‐methylation and O‐acylation) for the unprecedented 7‐methoxy‐4,5‐dihydro‐3H‐oxepin‐2‐one (C ring). The synthesis featured a cyclopropanation/ring opening strategy for establishing the stereogenic centers at C8 and C9, a biomimetic 2‐pyrone Diels–Alder cycloaddition for the synthesis of the ABD ring system, and finally a highly efficient biomimetic intramolecular O‐acylation for the C ring formation. This result provides an important perspective on the biosynthetic origin of the unprecedented 7‐membered acyl ketene acetal moiety of the C ring.  相似文献   

12.
The synthesis of heterotelechelic poly(methyl methacrylate) (PMMA) containing α‐maleimide‐ω‐dienyl end‐groups and its subsequent intramolecular cyclization are described. The anionic polymerization of methyl methacrylate was carried out with 3‐tert‐butyldimethylsilyloxypropyl‐1‐lithium and 5‐bromo‐1,3‐pentadiene as the initiator and terminator, respectively, to synthesize α‐hydroxy‐ω‐dienyl‐PMMA. The introduction of the maleimide group to the α chain end by the reaction of the sodium salt of the polymer with N‐(3‐chloromethylphenyl)‐maleimide or N‐(3‐bromomethylphenyl)‐maleimide was not successful because of the nucleophilic addition of alkoxide to the carbon carbon double bond of the maleimide group. When 4,4′‐bismaleimidediphenylether was allowed to react with the alkoxide, the aimed α‐maleimide‐ω‐dienyl‐PMMA was obtained in a good yield. Ring closure by the intramolecular Diels–Alder reaction was carried out by the heating of the dilute polymer solution in tetrahydrofuran. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 237–246, 2000  相似文献   

13.
Salvinorin A ( 1 ) is natural hallucinogen that binds the human κ‐opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l ‐(+)‐tartaric acid into that of (?)‐ 1 via an unprecedented allylic dithiane intramolecular Diels–Alder reaction to obtain the trans‐decalin scaffold. Tsuji allylation set the C9 quaternary center and a late‐stage stereoselective chiral ligand‐assisted addition of a 3‐titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto‐acetate.  相似文献   

14.
15.
A new concept to build shape memory polymers (SMP) combining outstanding fixity and recovery ratios (both above 99% after only one training cycle) typical of chemically crosslinked SMPs with reprocessability restricted to physically crosslinked SMPs is demonstrated by covalently bonding, through thermoreversible Diels–Alder (DA) adducts, star‐shaped poly(ε‐caprolactones) (PCL) end‐functionalized by furan and maleimide moieties. A PCL network is easily prepared by melt‐blending complementary end‐functional star polymers in retro DA regime, then by curing at lower temperature to favour the DA cycloaddition. Such covalent network can be reprocessed when heated again at the retro DA temperature. The resulting SMP shows still excellent shape memory properties attesting for its good recyclability.

  相似文献   


16.
4‐(Acylamino)‐5‐nitrosopyrimidines react either by a reductive condensation to provide 8‐substituted guanines, or by a Diels–Alder cycloaddition, or an ene reaction, to provide 6‐substituted pteridinones, depending on the nature of the acyl group and the reaction conditions. Experimental details are provided for the transformation of (acylamino)‐nitrosopyrimidines to 8‐substituted guanines, and the scope of the reaction is further demonstrated by transforming the trifluoro acetamide 25 to the 8‐(trifluoromethyl)guanine ( 27 ), and the N,Nbis(nitrosopyrimidinyl)‐dicarboxamide 29 to the (R,R)‐1,2di(guan‐8‐yl)ethane‐1,2‐diol ( 32 ). An intramolecular Diels–Alder reaction of the N‐sorbyl (=N‐hexa‐2,4‐dienoyl) nitrosopyrimidine 10 , followed by a spontaneous elimination to cleave the N,O bond of the initial cycloaddition product provided the pteridinones 14 or 15 , characterized by a (Z)‐ or (E)‐3‐hydroxyprop‐1‐enyl group at C(6). Treatment of 10 with Ph3P led to the C(8)‐penta‐1,3‐dienyl‐guanine 18 . The ene reaction of the N‐crotonyl (=N‐but‐2‐enoyl) nitrosopyrimidine 19 provided the 6‐vinyl‐pteridinone 20a that dimerized readily to 21a , while treatment of 19 with Ph3P led in high yield to 8‐(prop‐1‐enyl)guanine ( 23 ). The structure of the dimer 21 was established by X‐ray analysis of its bis(N,N‐dimethylformamidine) derivative 21b . The crystal structure of the nitroso amide 10 is characterized by two molecules in the centrosymmetric unit cell. Intermolecular H‐bonds connect the amino group to the amide carbonyl and to N(1). The crystalline bis(purine) 30 forms a left‐handed helix with four molecules per turn and a pitch of 30.2 Å.  相似文献   

17.
18.
Catalyzed by [CpRu(CH3CN)3]PF6, the hydrative cyclization of dipropargylic sulfone substrates provides an effective way to synthesize highly functionalized substituted 3‐sulfolenes. The amount of water is crucial for the reactivity of this cycloisomerization reaction. The scope and limitations of the Ru‐catalyzed cycloisomerization are discussed. A marked ketone‐directing effect was observed for the first time in ruthenium‐catalyzed cyclizations. A plausible mechanism for the ketone‐directed cycloisomerization is also rationalized. The utility of this method was demonstrated by both sulfur dioxide extrusion of the 3‐sulfolenes to afford 1,3‐dienes and subsequent inter‐ or intramolecular Diels–Alder reactions.  相似文献   

19.
We describe the modulation of reactivities of dienophiles for Diels? Alder reactions via a new principle based on chelating amides positioned adjacent to their C?C bond. It is demonstrated for modified acrylic acid derivatives and related dienophiles with three different chelating entities. Complexation of the chelators leads to an intensified electron‐withdrawing effect leading to an enhancement of reactivity in Diels? Alder reactions depending on the complexed metal ion. The application of this new approach might be extended to other reactions with reacting entities adjacent to chelating amides.  相似文献   

20.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号