首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile, convenient, and one‐pot multi‐step synthesis of substituted piperidin‐2‐ones from the BaylisHillman alcohols derived from various aldehydes and acrylonitrile, involving JohnsonClaisen rearrangement, reduction of an α,β‐unsaturated nitrile moiety into the saturated amine‐skeleton, followed by cyclization, in an operationally simple procedure, is described.  相似文献   

2.
An enantioselective synthesis of (+)‐β‐himachalene ( 2 ) was accomplished starting from (1S,2R)‐1,2‐epoxy‐p‐menth‐8‐ene ( 3 ) in 15 or 16 steps with an overall yield of ca. 6% (Schemes 3, 5, and 6). Key transformations include an Ireland–Claisen rearrangement, a Corey oxidative cyclization, and a ring expansion.  相似文献   

3.
Aldol‐type reaction between electron deficient aldehydes and sulfonium salts to afford the corresponding β‐hydroxy α‐sulfanyl esters in moderate‐to‐good yields by using nanocrystalline MgO is described. The sulfanyl group is a useful group for further transformations in organic synthesis. Low Rfvalue isomer is anti‐configured as revealed by X‐ray diffraction study and consistent with the assignment of 1H‐NMR spectrum.  相似文献   

4.
A modified synthetic route of [3,3′‐di‐sec‐butyl‐4′‐(2‐dimethylaminoethoxy)biphenyl‐4‐yloxy]acetic acid ( 1 ) with high total yield of 44% from biphenyl‐4,4′‐diol ( 2 ) is described.  相似文献   

5.
A concise synthesis of racemic Tapentadol and its stereoisomers was presented. The key step was a TiCl4·THF2‐catalzyed aza‐Belluš‐Claisen rearrangement to create two vicinal tertiary carbon stereogenic centers. The subsequent reduction of amide and hydrogenation of alkene delivered Tapentadol and its stereoisomers. The current approach offers a practical synthetic route to access this class of pharmaceutically significant molecules.  相似文献   

6.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

7.
An organocatalytic asymmetric synthesis of δ‐amino‐β‐ketoester derivatives has been developed. A chiral disulfonimide (DSI) serves as a highly efficient precatalyst for a vinylogous Mukaiyama–Mannich reaction of readily available dioxinone‐derived silyloxydienes with N‐Boc‐protected imines, delivering products in excellent yields and enantioselectivities. The synthetic utility of this reaction is illustrated in various transformations, including a new C? C bond‐forming reaction, which provide useful enantioenriched building blocks. The methodology is applied in a formal synthesis of (?)‐lasubin.  相似文献   

8.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

9.
This work reports a modular and rapid approach to the stereoselective synthesis of a variety of α‐ and β‐(1→2)‐linked C‐disaccharides. The key step is a Ni‐catalyzed cross‐coupling reaction of D ‐glucal pinacol boronate with alkyl halide glycoside easily prepared from commercially available D ‐glucal. The products of this sp2–sp3 cross‐coupling reaction can be converted to glucopyranosyl, mannopyranosyl, or 2‐deoxy‐glucopyranosyl C‐mannopyranosides by one‐ or two‐step stereoselective oxidative–reductive transformations. To the best of our knowledge, we demonstrated the first synthetic application of a challenging sp2–sp3 Suzuki‐Miyaura cross‐coupling reaction in carbohydrate chemistry.  相似文献   

10.
11.
12.
The photochemical reaction between three A5‐steroids (1–3) and a series of substituted 1,4‐benzoquinones and their mechanistic study were reported. The reaction in nitrogen atmosphere led to the formation of three products including the steroid‐quinone coupling compound (A), 7‐hydroxy derivatives of Δ5‐steroids (B) and substituted 1, 4‐hydroquinone (C). Both chemical and spectrometric evidences such as UV‐Visible spectra, ESR, chemically induced dynamic nuclear polarization (CIDNP) and cyclic voltammetry (CV) verified that the title reaction underwent a predominant photoinduced electron transfer pathway via the triplet quinone.  相似文献   

13.
A series of β‐amino esters were synthesized by the reaction of N‐tosyl aldimine or N‐hydroxy aldimine with bromoacetate by sonochemical Reformatsky reaction. The β‐N‐hydroxyamino ester was obtained and the formed sensitive hydroxylamino functionality was resistant under the reaction condition. The β‐lactam also was synthesized by the reaction of Np‐methoxy aldimine as reacting substrate under this sonochemical Reformatsky reaction condition.  相似文献   

14.
The cerium(IV) ammonium nitrate (CAN)‐catalyzed sequential multicomponent reaction between tryptamine, α,β‐unsaturated aldehydes, and β‐dicarbonyl compounds affords highly substituted indolo[2,3‐a]quinolizines in a single synthetic operation. Two rings are generated through the creation of two C? C and two C? N bonds by a domino process comprising initial β‐enaminone formation, followed by individual Michael addition, 6‐exotrig cyclization, iminium formation, and Pictet–Spengler steps. Furthermore, the reaction is diastereoselective and affords exclusively compounds with a trans relationship between the H‐2 and H‐12b protons. The use of amines bearing a less nucleophilic side chain aromatic ring (5‐bromotryptamine, 3,4‐dimethoxyphenylethylamine) prevents the Pictet–Spengler final step and leads to N‐indolylethyl or N‐phenylethyl‐1,4‐dihydropyridines, which are cyclized to the corresponding indolo[2,3‐a]quinolizines or benzo[a]quinolizines in the presence of HCl in methanol/water. Treatment of the fused quinolizine derivatives with sodium triacetoxyborohydride led to the corresponding indolo[2,3‐a]quinolizidines or benzo[a]quinolizidines, possessing four stereogenic centers, as mixtures of two diastereomers.  相似文献   

15.
16.
Methyl (2E,4R)‐4‐hydroxydec‐2‐enoate, methyl (2E,4S)‐4‐hydroxydec‐2‐enoate, and ethyl (±)‐(2E)‐4‐hydroxy[4‐2H]dec‐2‐enoate were chemically synthesized and incubated in the yeast Saccharomyces cerevisiae. Initial C‐chain elongation of these substrates to C12 and, to a lesser extent, C14 fatty acids was observed, followed by γ‐decanolactone formation. Metabolic conversion of methyl (2E,4R)‐4‐hydroxydec‐2‐enoate and methyl (2E,4S)‐4‐hydroxydec‐2‐enoate both led to (4R)‐γ‐decanolactone with >99% ee and 80% ee, respectively. Biotransformation of ethyl (±)‐(2E)‐4‐hydroxy(4‐2H)dec‐2‐enoate yielded (4R)‐γ‐[2H]decanolactone with 61% of the 2H label maintained and in 90% ee indicating a stereoinversion pathway. Electron‐impact mass spectrometry analysis (Fig. 4) of 4‐hydroxydecanoic acid indicated a partial C(4)→C(2) 2H shift. The formation of erythro‐3,4‐dihydroxydecanoic acid and erythro‐3‐hydroxy‐γ‐decanolactone from methyl (2E,4S)‐4‐hydroxydec‐2‐enoate supports a net inversion to (4R)‐γ‐decanolactone via 4‐oxodecanoic acid. As postulated in a previous work, (2E,4S)‐4‐hydroxydec‐2‐enoic acid was shown to be a key intermediate during (4R)‐γ‐decanolactone formation via degradation of (3S,4S)‐dihydroxy fatty acids and precursors by Saccharomyces cerevisiae.  相似文献   

17.
A series of α‐(fluoro‐substituted phenyl)pyridines have been synthesized by means of a palladium‐catalyzed cross‐coupling reaction between fluoro‐substituted phenylboronic acid and 2‐bromopyridine or its derivatives. The reactivities of the phenylboronic acids containing di‐ and tri‐fluoro substituents with α‐pyridyl bromide were investigated in different catalyst systems. Unsuccessful results were observed in the Pd/C and PPh3 catalyst system due to phenylboronic acid containing electron‐withdrawing F atom(s). For the catalyst system of Pd(OAc)2/PPh3, the reactions gave moderate yields of 55% –80%, meanwhile, affording 10% –20% of dimerisation (self‐coupling) by‐products, but trace products were obtained in coupling with 2,4‐difluorophenylboronic acids because of steric hinderance. Pd(PPh3)4 was more reactive for boronic acids with sterically hindering F atom(s), and the coupling reactions gave good yields of 90% and 91% without any self‐coupling by‐product.  相似文献   

18.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

19.
The Michael‐type addition of a 4‐hydroxycoumarin (=4‐hydroxy‐2H‐1‐benzopyran‐2‐one) 1 to a β‐nitrostyrene (=(2‐nitroethenyl)benzene) 2 in the presence of AcONH4 leads to substituted (3E)‐3‐[amino(aryl)methylidene]chroman‐2,4‐diones (=(3E)‐3‐[amino(aryl)methylene]‐2H‐1‐benzopyran‐2,4(3H)‐diones) 4 (Table 1). High yields, short reaction time, and easy workup are advantages of this novel one‐pot three‐component reaction.  相似文献   

20.
2,4,6‐Trichloro‐1,3,5‐triazine (TCT, cyanuric chloride) was found to mediate the regio‐ and stereoselective ring opening of epoxides in H2O in the presence of morpholine at room temperature to afford the corresponding β‐chlorohydrins in excellent yields (Table). The transformation is very simple, fast, efficient, and ecologically beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号