首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of specific protein markers for breast cancer would provide the basis for early diagnosis. Particularly, membrane and membrane-associated proteins are rich in targets for antibodies that may constitute suitable biomarkers of carcinogenesis. However, membrane proteins separation using 2-DE remains difficult. In this work, the breast cancer cell line MCF7 was used as source of proteins for the screening of potential cell membrane-associated antigens recognized by autoantibodies in patients with breast cancer and healthy volunteers. The protein extract obtained using trifluoroethanol (TFE) as cosolvent was compared to a total cell lysate protein extract prepared by a current technique. After 2-DE separation of the two extracts, their protein patterns clearly differed. About 63% of the proteins identified in the TFE-extract were predicted to possess at least one transmembrane domain. 2-D blots probed with sera from cancer patients or from healthy volunteers showed that, as expected, additional antigens were provided in the TFE-extract. Thus, the method described here appeared well suited for proteomic investigation of potential biomarkers undetected by current techniques.  相似文献   

2.
Immunization with complex mixtures, like the human plasma resulted in the generation of cloned mAb libraries (PlasmaScan? and QuantiPlasma? libraries, with >1000 individual mAbs) reacting with a nonredundant set of antigenic epitopes. mAb proteomics refers to quasi‐hypothesis‐free profiling of plasma samples with nascent or cloned mAb libraries for the discovery of disease‐specific biomarkers. Once mAbs with biomarker potential have been identified, the next task is the determination of cognate antigens recognized by the respective mAbs. To determine the cognate protein antigen corresponding to each individual mAbs in the cloned mAb libraries, we have separated human plasma by consecutive steps of desalting and various chromatography procedures. The process resulted in 783 fractions, which we termed “Analyte Library” (AL). The AL represents the human plasma proteome in relatively low‐protein complexity fractions. Here, to determine the utility of the AL, we selected ten plasma proteins and checked for their presence in the fractions. Among the ten cases, the distribution of four selected plasma proteins matched expectations, as these proteins were present only in a few fractions corresponding to their physical, chemical, and biochemical properties. However, in six cases, we observed “smear” ‐like distribution or complete absence of the proteins, suggesting that protein–protein interactions or protein variants may alter the observed plasma distribution profiles. Nevertheless, we conclude that the AL is an efficient, high throughput tool to complement the mAb biomarker discovery process with cognate protein antigen identification for each mAbs.  相似文献   

3.
The tumor‐associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti‐MUC1 immunodominant responses. Herein, we prepared synthetic anti‐MUC1 vaccines in which the hydrophilic MUC1 antigen was N‐terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam‐MUC1 or Pam2‐MUC1). These amphiphilic lipid‐tailed MUC1 antigens were self‐assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid‐conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti‐MUC1 IgG antibody titers induced by the Pam2‐MUC1 vaccine were more than 30‐ and 190‐fold higher than those induced by the Pam‐MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3CSK4 as an adjuvant also induced conjugated lipid‐dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3CSK4 adjuvant. Therefore, the non‐covalent assembly of the amphiphilic lipo‐MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti‐MUC1 cancer vaccines.  相似文献   

4.
Proteome profiling techniques rely on the separation of proteins or peptides and their subsequent quantification. The reliability of this technique is still limited because a proteome profiling result does not necessarily represent the true protein composition of the analysed sample, thus seriously hampering proper data interpretation. Many experimentally observed proteome alterations are biologically not significant. It was the aim of this study to use the knowledge of the biological context of proteins in order to establish optimised proteome profiling protocols. While 2-D spot patterns of total cell protein fractions were found to poorly represent the true protein composition, purified subcellular protein fractions were found to better represent the protein composition of the analysed sample. The application of a standardised protocol to different kinds of cells revealed several striking observations. Firstly, the protein composition of cultured cells of various origins is very similar. Secondly, proteome alterations observed with the described protocols do make sense from a biologic point of view and may thus be considered as truly representative for the analysed samples. Thirdly, primary white blood cells isolated from different donors were found to show minor, but reproducible and significant individual differences. We designate the consideration of known properties of identified proteins in proteome profiles as a knowledge-based approach. The present data suggest that this approach may tremendously help to improve the applied techniques and assess the results. We demonstrate that the fulfilment of well-defined criteria of proteome profiles eventually results in reliable and biologically relevant data.  相似文献   

5.
Early diagnosis as well as individualized therapies are necessary to reduce the mortality of breast cancer, and personalized patient care strategies rely on novel prognostic or predictive factors. In this study, with six breast cancer patients, 2D gel analysis was applied for studying protein expression differences in order to distinguish invasive ductal breast carcinoma, the most frequent breast tumor subtype, from control samples. In total, 1203 protein spots were assembled in a 2D reference gel. Differentially abundant spots were subjected to peptide mass fingerprinting for protein identification. Twenty proteins with their corresponding 38 differentially expressed 2D gel spots were contained in our previously reported proteome signature, suggesting that distinct protein forms were contributing. In-depth MS/MS measurements enabled analyses of protein structure details of selected proteins. In protein spots that significantly contributed to our signature, we found that glyceraldehyde-3-phosphate dehydrogenase was N-terminally truncated, pyruvate kinase M2 and nucleoside diphosphate kinase A but not other isoforms of these proteins were of importance, and nucleophosmin phosphorylation at serine residues 106 and 125 were clearly identified. Principle component analysis and hierarchical clustering with normalized quantitative data from the 38 spots resulted in accurate separation of tumor from control samples. Thus, separation of tissue samples as in our initial proteome signature could be confirmed even with a different proteome analysis platform. In addition, detailed protein structure investigations enabled refining our proteome signature for invasive ductal breast carcinoma, opening the way to structure-/function studies with respect to disease processes and/or therapeutic intervention.  相似文献   

6.
Advances in novel tumor-associated antigen (TAA) screening strategy have accelerated the identification and characterization of biomarkers and potential target molecules for tumor subtyping, diagnosis and therapeutics, which may facilitate early detection and diagnosis of the diseases individually and enhance treatment approaches for cancer. Over the past decades, a plethora of non-invasive methodologies dedicated to identify novel target molecules have been primarily focusing on the discovery of human tumor antigens recognized by the autologous antibody repertoire or cytotoxic T lymphocytes, among which serological analysis of recombinant cDNA expression libraries (SEREX) technology is chronologically first established and is of outstanding sensitivity and antigen coverage. This approach involves immunoscreening cDNA libraries extracted from fresh tumor tissues with sera from cancer patients to identify gene products recognized by IgG antibody. SEREX-defined clones can be directly sequenced and their expression profiles can be readily determined, allowing for immediate structural definition of the antigenic target and subsequent identification of TAAs and their cognate autoantibodies. This review is not only devoted to outline the SEREX technology and its advantages, drawbacks and recent modifications currently available for discovering provocative tumor antigens, but also to translate these SEREX-defined peptides into valuable cancer-specific signatures that would aid in the development of diagnostics, prognostics and therapeutics for cancer patients.  相似文献   

7.
Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA‐acetone method, phenol method, and phenol/TCA‐acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA‐acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment‐ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification.  相似文献   

8.
Circulating immune complexes (CICs) are produced during the immune response. It is more clinically important to establish a general and efficient CICs dissociation technique for the detection of antigens for CICs other than the detection of free antigens in the serum. Polyethylene glycol (PEG) two‐precipitation separation and glycine‐HCl as a buffer system were employed to develop a general and efficient buffer dissociation technique to separate CICs from serum and dissociate antigens from CICs. The measurement value of new PEG two‐precipitation separation technique was higher than traditional PEG precipitation separation technique. There were slight differences in the dissociation conditions of HCV Core‐IC, HIV P24‐IC, Ins‐IC and TG‐IC as compared to HBsAg‐IC. The detection of antigens in HBsAg‐IC, HCV Core‐IC, HIV P24‐IC, Ins‐IC and TG‐IC with this technique was superior to that with HCl Dissociation, Trypsin Digestion or Immune Complex Transfer technique. PEG two‐precipitation dissociation technique may reduce macromolecular protein and the adhesion of free antigens during the co‐precipitation, which increases the efficiency of separation and precipitation of CICs. This technique also avoids the damage of reagents to antigens, assuring the repeatability, reliability and validity. Thus, this technique is application in samples negative or positive for free antigens.  相似文献   

9.
Sialyl‐Tn (STn) is a tumor‐associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N‐acetyl and N‐propionyl STn trimer (triSTn) vaccines possessing a T‐helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti‐triSTn IgG antibodies, which recognized triSTn‐expressing cell lines PANC‐1 and HepG2. The N‐propionyl triSTn vaccine induced the triSTn‐specific IgGs, while IgGs induced by the N‐acetyl triSTn vaccine were less specific. These results illustrated that N‐propionyl triSTn is a valuable unnatural TACA for anticancer vaccines.  相似文献   

10.
As two-dimensional (2-D) electrophoresis allows the separation of several hundred proteins in a single gel, this technique has become an important tool for proteome studies and for investigating the cellular physiology. In order to take advantage of information provided by the comparison of proteome pictures, the mass spectrometry technique is the way chosen for a rapid and an accurate identification of proteins of interest. Unfortunately, in the case of industrial yeasts, due to the high level of complexity of their genome, the whole DNA sequence is not yet available and all encoded protein sequences are still unknown. Nevertheless, this study presents here 30 lager brewing yeast proteins newly identified with matrix assisted laser desorption/ionization-time of flight (MALDI-TOF), tandem mass spectrometry (MS/MS) and database searching against the protein sequences of Saccharomyces cerevisiae. The identified proteins of the industrial strain correspond to proteins which do not comigrate with known proteins of S. cerevisiae separated on 2-D gels. This study presents an application of the MS technique for the identification of industrial yeast proteins which are only homologous to the corresponding S. cerevisiae proteins.  相似文献   

11.
Four different formats of bispecific antibodies (bsAbs) were generated that consist of anti‐Her2 IgG or Fab site‐specifically conjugated to anti‐CD3 Fab using the genetically encoded noncanonical amino acid. These bsAbs varied in valency or in the presence or absence of an Fc domain. Different valencies did not significantly affect antitumor efficacy, whereas the presence of an Fc domain enhanced cytotoxic activity, but triggered antigen‐independent T‐cell activation. We show that the bsAbs can efficiently redirect T cells to kill all Her2 expressing cancer cells, including Her2 1+ cancers, both in vitro and in rodent xenograft models. This work increases our understanding of the structural features that affect bsAb activity, and underscores the potential of bsAbs as a promising therapeutic option for breast cancer patients with low or heterogeneous Her2 expression.  相似文献   

12.
Recently, matrix-assisted laser desorption ionization (MALDI) technique has been shown to be complementary to electrospray ionization (ESI) with respect to the population of peptides and proteins that can be detected. In this study, we tried to hyphenate MALDI-TOF-TOF-MS and ESI-QUADRUPOLE-TOF-MS with a single 2D liquid chromatography for complicated protein sample analysis. The effluents of RPLC were split into two parts for the parallel MS/MS detection. After optimizing the operation conditions in LC separation and MS identification, a total of 1149 proteins were identified from the global lysate of normal human liver (NHL) tissue. Compared to the single MS/MS detection, the combined analysis increased the number of proteins identified (more than 25%) and enhanced the protein identification confidence. Proteins identified were categorized and analyzed based upon their cellular location, biological process and molecular function. The identification results demonstrated the application potential of a parallel MS/MS analysis coupled with multi-dimensional LC separation for complicated protein sample identification, especially for proteome analysis, such as human tissues or cells extracts.  相似文献   

13.
Myosin heavy chain (MHC) isoforms have been considered as makers for muscle fiber types in relation to meat quality, whereas MHC isoforms in porcine skeletal muscle have not been fully identified. The improved technique of SDS‐PAGE and 2DE were used to separate porcine MHC isoforms. Western blotting with monoclonal antibodies including BA‐F8 (anti‐MHC slow/I), SC‐71 (anti‐MHC 2a and 2x), 10F5 (anti‐MHC 2b), and BF‐35 (anti‐MHC slow/I and 2a) and MS were used to confirm MHC migration rate and identify MHC isoforms from separated bands and spots. Up to 45% w/v of glycerol, 8% w/v of acrylamide content, and 25 h of electrophoretic time at 70 V allowed a clear separation of MHC isoforms. Major MHC isoforms such as slow, 2a, 2x, and 2b were clearly separated by SDS‐PAGE. A total of 23 MHC spots were separated and identified by 2DE and MS. Therefore, four MHC isoforms such as slow/I, 2a, 2x, and 2b could be identified by the improved SDS‐PAGEtechnique, 2DE and MS. Therefore, these techniques allow more accurate and accessible analysis in muscle fiber typing and in relationship between MHC isoforms, muscle fiber characteristics, and pork quality.  相似文献   

14.
Ovarian cancer is the fifth leading cause of cancer death for women in the US, yet survival rates are over 90% when it is diagnosed at an early stage, highlighting the need for biomarkers for early detection. To enhance the discovery of tumor‐specific proteins that could represent novel serum biomarkers for ovarian cancer, we depleted serum of highly abundant proteins which can mask the detection of proteins present in serum at low concentrations. Three commercial immunoaffinity columns were used in parallel to deplete the highly abundant proteins in serum from 60 patients with serous ovarian carcinoma and 60 non‐cancer controls. Medium and low abundance serum proteins from each serum pool were then evaluated by the quantitative proteomic technique of differential in‐gel electrophoresis. The number of protein spots that were elevated in ovarian cancer sera by at least twofold ranged from 36 to 248, depending upon the depletion and separation methods. From the 33 spots picked for MS analysis, nine different proteins were identified, including the novel candidate ovarian cancer biomarkers leucine‐rich α2 glycoprotein‐1 and ficolin 3. Western blotting validated the relative increases in serum protein levels for three of the proteins identified, demonstrating the utility of this approach for the identification of novel serum biomarkers for ovarian cancer.  相似文献   

15.
Cells gain their functional specialization by different protein synthesis. A lot of knowledge with respect to cell type‐specific proteins has been collected during the last thirty years. This knowledge was built mainly by using antibodies. Nowadays, modern MS, which supports comprehensive proteome analyses of biological samples, may render possible the search for cell type‐specific proteins as well. However, a therefore necessary systematic MS study comprising many different cell types has not been performed until now. Here we present a proteome analysis strategy supporting the automated and meaningful comparison of any biological samples. We have presently applied this strategy to six different primary human cell types, namely leukocytes, endothelial cells, keratinocytes, hepatocytes, fibroblasts, and melanocytes. Comparative analysis of the resulting proteome profiles allowed us to select proteins specifically identified in one of the six cell types and not in any of the five others. Based on these results, we designated cell type‐specific proteome signatures consisting each of six such characteristic proteins. These signatures independently reproduced well‐known marker proteins already established for FACS analyses in addition to novel candidate marker proteins. We applied these signatures for the interpretation of proteome profiles obtained from the analyses of hepatocellular carcinoma‐associated tissue homogenates and normal liver tissue homogenates. The identification of members of the above described signatures gave us an indication of the presence of characteristic cells in the diseased tissues and thus supported the interpretation of the proteomics data of these complex biological samples.  相似文献   

16.
The proteome of the human nucleolus was investigated in a single analysis using off-line strong cation exchange chromatography and microfraction collection combined with HPLC-chip/MS. The analysis was conducted either as a 1-D workflow with HPLC-chip alone or as a 2-D workflow. Two hundred and six unique proteins were identified in the International Protein Index human database corresponding to 2024 unique tryptic peptides identified in the 2-D analysis. In contrast, only 34 proteins and 151 corresponding tryptic peptides were found by applying a 1-D separation strategy. This clearly indicated that the complexity of the samples required the combination of more than one orthogonal separation technique. Stringent database search criteria, including reversal of sequences and therefore better exclusion of false-positive identifications, were applied for reliable protein identification.  相似文献   

17.
建立了一种规模化的蛋白质组分离和鉴定新方法。通过对在生命发育过程中具有重要研究价值的人胎肝线粒体蛋白质组的分离分析,表明与毛细管液-质联用的不同分离方法的组合可以增大检测动态范围和分辨率。研究共鉴定了2977个肽段,归属于915种蛋白质。去除批次间冗余后,鉴定的蛋白质为477种,其中291种为唯一蛋白质,186种为蛋白质簇,144种蛋白质明确定位于人胎肝线粒体中。所鉴定蛋白质的分子量分布范围为7000Da~330000 Da,pI值分布在4.0~11.89,克服了两维凝胶电泳在分子量和pH方面的歧视性问题。实验中发现的蛋白质簇以及确定一种蛋白质需要最少肽段数的问题还需要进一步研究。  相似文献   

18.
Optimization of parameters for coverage of low molecular weight proteins   总被引:1,自引:0,他引:1  
Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT-CID and IT-ETD allowed the validation of 75% of the identified proteins using this orthogonal fragmentation technique. Furthermore, a new approach to evaluating and improving the completeness of protein databases that utilizes the program RNAcode was introduced and examined.  相似文献   

19.
Proteomic approaches including high-resolution 2-DE are providing the tools needed to discover disease-associated biomarkers in complex biological samples. Although 2-DE is an extremely powerful approach to analyze the proteome, the separation of proteins with extreme molecular masses still remains an issue requiring improvement. Because high molecular mass (HMM) proteins larger than 150 kDa have already been observed to be differentially expressed in several pathologies such as cancer, we developed an original strategy to analyze this part of the proteome that is not easily separated by 2-DE in polyacrylamide gels. This strategy is based on the 2-DE separation of cyanogen bromide (CNBr) fragments of purified HMM protein fractions, and combines techniques including SEC fractionation, TCA precipitation, CNBr cleavage, 2-DE and MS analysis. The method was first tested on a model protein, the BSA. Preliminary results obtained using colonic tissues led to the identification of six HMM proteins with M(r) comprised between 163 and 533 kDa in their reduced state. These results demonstrated that our CNBr/2-DE approach should provide a powerful tool for identification of new biomarkers larger than 150 kDa.  相似文献   

20.
Herein, we report on a tumor nanovaccine LMNP@CM that enhances the process of antigen‐presenting by stimulating the immune system to uptake tumor antigens actively. The nanovaccine is comprised of polyethylene glycol modified liquid metal nanoparticles (LMNP) and tumor cell membranes (CM) as antigens. Under 808 nm irradiation, the photothermal conversion effect of injected LMNP can cause mild local inflammation, and subsequently induces antigen‐presenting cells active recruitment and facilitates cellular uptake of tumor antigens. Meanwhile, because of the immune adjuvant effect of metal materials, the nanovaccine LMNP@CM promotes the maturation and activation of antigen‐presenting cells and induces anti‐tumor immune response effectively. By priming the host immune recognition of tumor antigens, this nanovaccine displays prophylactic effects and significantly suppresses tumor growth in a mouse breast tumor model. The nanovaccine LMNP@CM represents a novel strategy of utilizing light‐controlled means to actively induce anti‐tumor immune processes, showing advanced therapeutic potentials and robust adaptability for treating multiple tumors by changing the loaded antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号