首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Electrophoresis》2017,38(8):1188-1200
To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte‐cyclodextrin‐complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β‐cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x ‐reciprocal, y ‐reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β‐cyclodextrin, (2‐hydroxypropyl)‐β‐cyclodextrin, methyl‐β‐cyclodextrin and 6‐O‐α‐maltosyl‐β‐cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer‐cyclodextrin‐complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β‐cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes.  相似文献   

2.
To improve resolution power of chiral selector and enantiomeric peak efficiency in CE, single isomer negatively charged β‐CD derivatives, mono(6‐deoxy‐6‐sulfoethylthio)‐β‐CD (SET‐β‐CD) bearing one negative charge and mono[6‐deoxy‐6‐(6‐sulfooxy‐5,5‐bis‐sulfooxymethyl)hexylthio]‐β‐CD (SMHT‐β‐CD) carrying three negative charges, were synthesized. The structure of these two β‐CD derivatives was confirmed by 1H NMR and MS. SET‐β‐CD and SMHT‐β‐CD successfully resolved the enantiomers of several basic model compounds. SMHT‐β‐CD provided for a significantly greater enantioseparation than SET‐β‐CD at lower concentrations. This appears to be due to the higher binding affinity of SMHT‐β‐CD to the model compounds and the wider separation window resulting from an increased countercurrent mobility of the selector. Overall, the new chiral selectors provided enantioseparations with high peak efficiency while avoiding peak distortion due to polydispersive and electrodispersive effects. The information obtained from an apparent binding constant study suggested that the enantioseparation of the model compounds followed the predictions of charged resolving agent migration model and that the observed degree of enantioseparation difference were due to the magnitude of differences in both enantiomer‐chiral selector binding affinities (ΔK) and the mobilities of the complexed enantiomers (Δμc).  相似文献   

3.
Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)‐enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β‐cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)‐enantiomers of ANPs‐based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0–25 mM) of βCD. The apparent binding constants of the complexes of (R,S)‐enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)‐enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)‐enantiomers of ANPs with βCD have been found to be relatively weak – their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3–46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3–55.2 L/mol.  相似文献   

4.
Chiral ITP of the weak base methadone using inverse cationic configurations with H+ as leading component and multiple isomer sulfated β‐CD (S‐β‐CD) as leading electrolyte (LE) additive, has been studied utilizing dynamic computer simulation, a calculation model based on steady‐state values of the ITP zones, and capillary ITP. By varying the amount of acidic S‐β‐CD in the LE composed of 3‐morpholino‐2‐hydroxypropanesulfonic acid and the chiral selector, and employing glycylglycine as terminating electrolyte (TE), inverse cationic ITP provides systems in which either both enantiomers, only the enantiomer with weaker complexation, or none of the two enantiomers form cationic ITP zones. For the configuration studied, the data reveal that only S‐methadone migrates isotachophoretically when the S‐β‐CD concentration in the LE is between about 0.484 and 1.113 mM. Under these conditions, R‐methadone migrates zone electrophoretically in the TE. An S‐β‐CD concentration between about 0.070 and 0.484 mM results in both S‐ and R‐methadone forming ITP zones. With >1.113 mM and < about 0.050 mM of S‐β‐CD in the LE both enantiomers are migrating within the TE and LE, respectively. Chiral inverse cationic ITP with acidic S‐β‐CD in the LE is demonstrated to permit selective ITP trapping and concentration of the less interacting enantiomer of a weak base.  相似文献   

5.
The methods for the enantioseparation of m‐nisoldipine, a new 1,4‐dihydropyridine calcium ion antagonist, were developed. The elaborated methods of m‐nisoldipine enantiomers separation were successfully performed using an anionic CD–sulfobutyl ether‐β‐CD (SBE‐β‐CD) or carboxymethyl‐β‐CD as chiral selector. However, the results indicated that SBE‐β‐CD was a better chiral selector for enantioseparation of the neutral m‐nisoldipine. Furthermore, comparing the two SBE‐β‐CDs, the derivative with a higher degree of substitution (DS) of 7.0 induced better enantioresolution than the one with low DS (4.0). In addition, possible chiral recognition mechanisms of dihydropyridines were discussed.  相似文献   

6.
The aim of the present study was the investigation of the effect of urea on analyte complexation in CD‐mediated separations of peptide enantiomers by CE in the pH range of about 2–5. pH‐independent complexation and mobility parameters in the absence and presence of 2 M urea were obtained by three‐dimensional, non‐linear curve fitting of the effective analyte mobility as a function of pH and heptakis‐(2,6‐di‐O‐methyl)‐β‐CD concentration. Urea led to decreased binding strength of the CD towards the protonated and neutral analyte enantiomers as well as to decreased mobilities of the free analytes. In contrast, mobilities of the fully protonated enantiomer–CD complexes as well as the pKa values of the free and complexed analytes increased. The effect of urea on separation efficiency varied with pH and CD concentration. In the case of Ala‐Tyr and Ala‐Phe, separations improved in the presence of urea at pH 2.2. In contrast, separations were impaired by urea at pH 3.8 and low concentrations of the CD. Decreased separation efficiency was noted for Asp‐PheOMe and Glu‐PheNH2 at low CD concentrations when urea was added but separations improved at higher CD concentrations over the entire pH range studied. The effect of urea on analyte complexation appeared to be primarily non‐stereoselective. Furthermore, the pH‐dependent reversal of the enantiomer migration order observed for Ala‐Tyr and Ala‐Phe can be rationalized by the complexation and mobility parameters.  相似文献   

7.
Complete resolution of hydroxyeicosatetraenoic acid (HETE) enantiomers was achieved using hydroxypropyl‐γ‐cyclodextrin (HP‐γ‐CD)‐modified MEKC. The optimum running conditions were determined to be utilizing a 30 mM phosphate–15 mM borate buffer (pH 9.0) containing 30 mM HP‐γ‐CD and 75 mM SDS as the BGE, application of +30 kV as the effective voltage, and carrying out the experiment at 15°C. The eluents were detected at 235 nm. The method was used successfully for the simultaneous separations of (S)‐ and (R)‐enantiomers of regioisomeric 8‐, 11‐, 12‐, and 15‐HETEs. Subsequently, the optimized method was applied to evaluate the stereochemistry of 8‐ and 12‐HETEs from the marine red algae, Gracilaria vermiculophylla and Gracilaria arcuata, respectively. The 8‐HETE was found to be a mixture of 98% (R)‐enantiomer and 2% (S)‐enantiomer, while the 12‐HETE was a mixture of 98% (S)‐enantiomer and 2% (R)‐enantiomer. The present study demonstrates that the HP‐γ‐CD‐modified MEKC method is simple and sensitive and provides unambiguous information on the configuration of natural and synthetic HETEs.  相似文献   

8.
Twelve basic analytes, including ephedrine and its structurally related compounds, were used to study the influence of capillary temperature on enantioselectivity in CE enantioseparations under reversed polarity mode using sulfated β‐CD (S‐β‐CD) as chiral selectors. All of the effective mobility changes of (+)‐enantiomers between 35 and 20°C were higher than those of (–)‐enantiomers whosoever enantioselectivity increased or decreased with an increase in temperature. However, the unusual temperature effect that enantioselectivity was increased with an increase of temperature was observed for the compounds with hydroxyl substitution on phenyl ring and had relationship with the molecular structures. With performing NMR studies on the selected selector‐analyte complexes, the results led to a deeper understanding of the chiral discrimination process. Inspection of the complexation‐induced chemical shifts (CICS) of the enantiomers showed that the phenyl ring sits deeply and slantways in the cavity of S‐β‐CD and alkyl chain pointed out of the wider rim of S‐β‐CD with ion–ion and hydrogen bond interactions between analytes and S‐β‐CD.  相似文献   

9.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

10.
Recycling countercurrent chromatography was successfully applied to the resolution of 2‐(4‐bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti‐inflammatory drug loxoprofen, using hydroxypropyl‐β‐cyclodextrin as chiral selector. The two‐phase solvent system composed of n‐hexane/n‐butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β‐cyclodextrin, concentration of hydroxypropyl‐β‐cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2‐(4‐bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high‐performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8–65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti‐inflammatory drug loxoprofen by countercurrent chromatography and high‐performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far.  相似文献   

11.
目的:建立刺激胰岛素分泌的新型降糖药物(-)-2 (S)-苄基-4-酮-4-(顺式-全氢化异吲哚-2-基)丁酸钙对映体的HPLC拆分方法。方法:采用Sumichiral OA-3300手性柱(250 × 4.6 mm I.D., 5 μm), 柱温35℃,以0.05 mol·L-1醋酸铵的甲醇溶液为流动相,检测波长为210 nm。结果:本品两对映体在22分钟内实现良好分离,分离度达3以上,S-异构体分别在0.028 ~ 5.6 μg mL-1和0.03 ~ 6.0 μg mL-1范围内线性关系良好,回归方程分别为:Y=1.32×103x-2.54 (r=0.9997)和Y=1.15×103x-1.78 (r=0.9998),最低检测限分别为0.15 ng和0.10 ng,方法精密度RSD低于1.0% (n=5)。结论:建立的对映体分离方法可用于本品光学异构体的质量控制。  相似文献   

12.
In a first step, 26 chiral stationary phases (CSPs) have been screened for the separation of (–)‐α‐thujone, (+)‐β‐thujone epimers and camphor enantiomers by LC. The separations were monitored by a polarimeter detector. None of these CSPs provided a noticeable resolution for camphor enantiomers. The three components of a test mixture were clearly baseline separated on Chiralpak AS‐H, Chiralpak AZ‐H and TCI‐MBS (poly(N‐alpha‐(S)‐methylbenzylmaleimide) coated on silica gel) in a mobile phase composed of hexane/2‐PrOH (99:1 v/v). Interestingly, for a preparative application, the three CSPs produced different elution orders for the three constituents of the mixture. In a second step, it is shown that the use of online polarimetric detection constitutes an unprecedented method to reveal the occurrence and the relative content of thujone epimers and the chirality of the major camphor enantiomer in crude essential oils. A proof of concept is illustrated on crude essential oils from Rosmarinus tournefortii, Artemisia herba alba and A. arborescens, which grow in Morocco and have several traditional uses there. In a third step, pure (+)‐β‐thujone was quantitatively collected from A. arborescens crude oil by semi‐preparative HPLC on Chiralpak AZ‐H monitored by a polarimeter.  相似文献   

13.
In order to determine isoflavone glycosides (calycosin‐7‐O‐β‐d ‐glucoside and formononetin‐7‐O‐β‐d ‐glucoside) and aglycones (calycosin and formononetin), a simple HPLC method with isocratic elution employing hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as a mobile phase additive was developed. Various factors affecting the retention of isoflavone glycosides and aglycones in the C18 reversed‐phase column, such as the nature of cyclodextrins, HP‐β‐CD concentration, and methanol concentration, were systematically studied. The results show that HP‐β‐CD, as a very effective mobile phase additive, can markedly reduce the retention of isoflavone glycosides and aglycones, and the decrease magnitudes of isoflavone aglycones are more than those of their glycosides. The role of HP‐β‐CD in the developed HPLC method is attributed to the formation of the inclusion complexes between isoflavone glycosides (or aglycones) and HP‐β‐CD. So, the apparent formation constants of the isoflavone glycosides (or aglycones)/HP‐β‐CD inclusion complexes also were investigated. Isoflavone glycosides (and aglycones) form the 1:1 inclusion complexes with HP‐β‐CD, and the isoflavone aglycones/HP‐β‐CD complexes are more stable than the isoflavone glycosides/HP‐β‐CD complexes. Finally, the optimized method was successfully applied for the determination of isoflavone glycosides and aglycones in Radix Astragali samples.  相似文献   

14.
In this work, myoglobin (Mb) and sulfonated‐β‐cyclodextrin (S‐CD) were assembled into {S‐CD/Mb}n layer‐by‐layer films on solid substrates. In pH 7.0 buffers, the {S‐CD/Mb}n films assembled on electrodes showed a pair of well‐defined and nearly reversible CV peaks at about ?0.35 V vs. SCE. The stable CV response of {S‐CD/Mb}n films could be used to electrocatalyze reduction of oxygen and hydrogen peroxide in solution. For comparison, another modified β‐cyclodextrin, carboxyethyl‐β‐cyclodextrin (C‐CD), was also assembled with Mb into {C‐CD/Mb}n multilayer films. The driving forces of the assembly were explored and discussed.  相似文献   

15.
A novel linear poly(N‐isopropylacrylamide) (PNIPA) with β‐cylodextrin (β‐CD) moiety (PNIPA‐β‐CD) was synthesized by the conjugation of β‐CD carrying amino groups (EDA‐β‐CD) onto PNIPA with epoxy groups (P(NIPA‐co‐GMA), Mn = 3.86 × 104), and the related reaction conditions are investigated. PNIPA‐β‐CD was characterized by means of IR, NMR and UV spectroscopes, element analysis, and differential scanning calorimetry (DSC). The number‐average molecular weight (Mn) and the β‐CD content of the obtained PNIPA‐β‐CD are 4.87 × 104 and 18.8 wt %, respectively. PNIPA‐β‐CD can not only respond to temperature stimuli but also include guest molecules. Lower critical solution temperature (LCST) of aqueous PNIPA‐β‐CD solution is similar to that of PNIPA. The association constant (Ka) for PNIPA‐β‐CD with methyl orange (MO) is 2.4 × 103 L mol?1 at pH 1.4, which is comparable to that of EDA‐β‐CD (Ka = 2.9 × 103 L mol?1). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3516–3524, 2005  相似文献   

16.
Pantoprazole, a proton pump inhibitor, is clinically used for the treatment of peptic diseases. An enantioselective LC‐MS/MS method was developed and validated for the simultaneous determination of pantoprazole enantiomers in human plasma. Pantoprazole enantiomers and the internal standard were extracted from plasma using acetonitrile. Chiral separation was carried on a Chiralpak IE column using the mobile phase consisted of 10 mm ammonium acetate solution containing 0.1% acetic acid–acetonitrile (28 : 72, v /v). MS analysis was performed on an API 4000 mass spectrometer. Multiple reactions monitoring transitions of m /z 384.1→200.1 and 390.1→206.0 were used to quantify pantoprazole enantiomers and internal standard, respectively. For each enantiomer, no apparent matrix effect was found, the calibration curve was linear over 5.00–10,000 ng/mL, the intra‐ and inter‐day precisions were below 10.0%, and the accuracy was within the range of –5.6% to 0.6%. This method was applied to the stereoselective pharmacokinetic studies in human after intravenous administration of S ‐(–)‐pantoprazole sodium injections. No chiral inversion was observed during sample storage, preparation procedure and analysis. While R ‐(+)‐pantoprazole was detected in human plasma with a slightly high concentration, which implied that S ‐(–)‐pantoprazole may convert to R ‐(+)‐pantoprazole in some subjects.  相似文献   

17.
In this study, a new CE method, employing a binary system of trimethyl‐β‐CD (TM‐β‐CD) and a chiral amino acid ester‐based ionic liquid (AAIL), was developed for the chiral separation of seven 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l ‐alanine tert butyl ester lactate (l ‐AlaC4Lac). Parameters, such as concentrations of TM‐β‐CD and l ‐AlaC4Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs>1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %‐RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run‐to‐run, batch‐to‐batch, and day‐to‐day reproducibilities.  相似文献   

18.
Oleanolic acid (OA) and ursolic acid (UA) are isomeric triterpenoid compounds with similar pharmaceutical properties. Usually, modern chromatographic and electrophoretic methods are widely utilized to differentiate these two compounds. Compared with mass spectrometric (MS) methods, these modern separation methods are both time‐ and sample‐consuming. Herein, we present a new method for structural differentiation of OA and UA by Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) with the association of heptakis‐(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DM‐β‐CD). Exact MS and tandem MS (MS/MS) data showed that there is no perceptible difference between OA and UA, as well as their β‐cyclodextrin and γ‐cyclodextrin complexes. However, there is a remarkable difference in MS/MS spectra of DM‐β‐CD complexes of OA and UA. The peak corresponding to the neutral loss of a formic acid and a water molecule could only be observed in the MS/MS spectrum of the complex of DM‐β‐CD : OA. Molecular modeling calculations were also employed to further investigate the structural differences of DM‐β‐CD : OA and DM‐β‐CD : UA complexes. Therefore, by employing DM‐β‐CD as a reference reagent, OA and UA could be differentiated with purely MS method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
《化学:亚洲杂志》2018,13(19):2812-2817
Efficient resolution of racemic mixture has long been an attractive but challenging subject since Pasteur separated tartrate enantiomers in 19th century. Graphene oxide (GO) could be flexibly functionalized by using a variety of chiral host molecules and therefore, was expected to show excellent enantioselective resolution performance. However, this combination with efficient enantioselective resolution capability has been scarcely demonstrated. Here, nanoporous graphene oxides were produced and then covalently functionalized by using a chiral host material‐β‐cyclodextrin (β‐CD). This chiral GO displayed enantioselective affinity toward the l ‐enantiomers of amino acids. In particular, >99 % of l ‐asparagine (Asn) was captured in a racemic solution of Asn while the adsorption of d ‐enantiomer was not observed. This remarkable resolution performance was subsequently modelled by using an attach‐pull‐release dynamic method. We expect this preliminary concept could be expanded to other chiral host molecules and be employed to current membrane separation technologies and finally show practical use for many other racemates.  相似文献   

20.
Complementary techniques were applied for the investigation of the chiral recognition and enantiomeric resolution of lenalidomide using various cyclodextrins and polysaccharides as chiral selectors. The high‐performance liquid chromatography enantioseparation of the anticancer drug was achieved using polysaccharide‐type chiral stationary phases in polar organic mode. Elution order and absolute configuration were elucidated by combined circular dichroism spectroscopy and time‐dependent density functional theory calculations after the isolation of pure enantiomers. Chiral selector dependent and mobile‐phase dependent reversal of the enantiomer elution order was observed, and the nonracemic nature of the lenalidomide sample was also demonstrated. Eight anionic cyclodextrins were screened for their ability to discriminate between the uncharged enantiomers by using capillary electrophoresis. Only two derivatives presented chiral interactions, these cases being interpreted in terms of apparent stability constants and complex mobilities. The best results were delivered by sulfobutylether‐β‐cyclodextrin, where quasi‐equal stability constants were recorded and the enantiodiscrimination process was mainly driven by different mobilities of the transient diastereomeric complexes. The optimized high‐performance liquid chromatography (Chiralcel OJ column, pure ethanol with 0.6 mL/min flow rate, 40°C) and capillary electrophoresis methods (30 mM sulfobutylether‐β‐cyclodextrin, 30 mM phosphate pH 6.5, 12 kV applied voltage, 10°C) were validated for the determination of 0.1% (R)‐lenalidomide as a chiral impurity, which could be important if a racemic switch is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号