首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(9):2520-2524
A highly sensitive electrochemiluminescence (ECL) biosensing method was developed for monitoring casein kinase II (CK2) at subcellular level via bio-bar-code assay. A bio-bar-code probe (h-DNA/AuNPs/p-DNA) prepared by conjugating phosphorylated DNA (p-DNA) and hairpin DNA (h-DNA) onto gold nanoparticles (AuNPs) was used as a carrier for ECL signal reagent (Ru(phen)32+) while a specific peptide was used as a recognition substance. A gold ultramicroelectrode with a diameter of 400 nm was fabricated and then modified with the specific peptide via self-assembly technique to obtain peptide modified gold ultramicroelectrode. The peptide on gold ultramicroelectrode was phosphorylated in the presence of CK2 and adenosine 5′-triphosphate, and then the phosphorylated peptide was integrated with the h-DNA/AuNPs/p-DNA through a process mediated by zirconium cations (Zr4+), and finally Ru(phen)32+ was intercalated into h-DNA. A “signal on” ECL method was developed for the detection of CK2 in the range of 0.005–0.2 U/mL with a detection limit of 0.001 U/mL. Additionally, combined efficient subcellular phosphorylation in vivo with bio-bar-code-based ECL biosensing method, the ECL method was further applied to monitor CK2 at subcellular level without tedious subcellular fractionation. It was found that the concentration of CK2 by inserting the peptide modified gold ultramicroelectrode into the nucleus was higher than that into cytoplasm of HeLa cells. A distinct heterogeneity among CK2 concentrations in single cells was observed for cellular heterogeneity assessment.  相似文献   

2.
The article studied UV‐B effects on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum during the bud stage. The experiment included four UV‐B radiation levels (CK, ambient UV‐B; T1, T2 and T3 indicated a 5%, 10% and 15% increase in ambient UV‐BBE, respectively) to determine the optimal UV‐B radiation intensity in regulating active ingredients level in flowers of two chrysanthemum varieties. Flower dry weight of two cultivars was not affected by UV‐B radiation under experimental conditions reported here. UV‐B treatments significantly increased the rate of superoxide radical production, hydrogen peroxide (H2O2) (except for T1) and malondialdehyde concentration in flowers of Huai chrysanthemum and H2O2 concentration in flowers of Qi chrysanthemum. T2 and T3 treatments induced a significant increase in phenylalanine ammonia lyase enzyme (PAL) activity, anthocyanins, proline, ascorbic acid, chlorogenic acid and flavone content in flowers of two chrysanthemum varieties, and there were no significant differences in PAL activity, ascorbic acid, flavone and chlorogenic acid content between the two treatments. These results indicated that appropriate UV‐B radiation intensity did not result in the decrease in flower yield, and could regulate PAL activity and increase active ingredients content in flowers of two chrysanthemum varieties.  相似文献   

3.
Enzyme-catalyzed reactions play key roles in disease pathology, thus making them relevant subjects of therapeutic inhibitor screening experiments. Matrix-assisted laser desorption/ionization (MALDI) assays have been demonstrated to be able to replace established screening approaches. They offer increased sample throughput, but care must be taken to avoid instrumental bias from differences in ionization efficiencies. We compared a MALDI-triple-quadrupole (QqQ) method for the Dyrk1A peptide substrate woodtide to LC–MS, liquid chromatography with ultraviolet detection (LC–UV), luminescence, and radiometric assays. MALDI measurements were performed on a MALDI-QqQ instrument in the multiple-reaction monitoring mode. Different MALDI conditions were investigated to address whether matrix type, sample support, and MRM- or SIM-based detection conditions can be used to accommodate the molar responses of substrate peptide and its phosphorylated form. UV detection served as a reference method. The impact of MALDI matrix on IC50 values was small, even considering that matrix preparations were used that are known to alleviate response differences. IC50 values determined by MALDI were ca. 2-fold lower than those determined by LC–UV. Although MALDI generated lower ion yields for the phosphorylated peptide than for the peptide substrate, we found that a correction of compound potencies was readily possible using correction factors based on unbiased LC–UV results. A thorough method development delivered a robust assay with excellent performance (Z′ > 0.91) that was close to that seen for LC–UV.
Figure
?  相似文献   

4.
A novel, sensitive and versatile electrogenerated chemiluminescence biosensing platform is developed for monitoring activity and inhibition of protein kinase based on Ru(bpy)32+ functionalized gold nanoparticles (Ru(bpy)32+-AuNPs) mediated signal transduction. Ru(bpy)32+-AuNPs were formed by functionalizing AuNPs with Ru(bpy)32+ through electrostatic interactions and were used as thiol-versatile signal probe. Casein kinase II (CK2) and cAMP-dependent protein kinase (PKA), two classical protein kinase implicated in disease, were chosen as model protein kinases while a CK2-specific peptide (CRRRADDSDDDDD) and a PKA-specific peptide (CLRRASLG) were employed as molecular substrate for CK2 and PKA, respectively. The specific peptide was self-assembled onto the gold electrode via Au–S bond to form ECL biosensor. Upon thiophosphorylation of the peptide on the electrode in the presence of protein kinase and co-substrate adenosine-5’-(γ-thio)-triphosphate, Ru(bpy)32+-AuNPs was assembled onto the thiophosphorylated peptides via Au–S bond. The Ru(bpy)32+-AuNPs attached on electrode surface produce detectable ECL signal in the presence of coreactant tripropylamine. This strategy is promising for multiple protein kinase assay and kinase inhibitor profiling with high sensitivity, good selectivity and versatility. The ECL intensity is proportional to the activity of CK2 in the range of 0.01–0.5 unit/mL with a low detection limit of 0.008 unit/mL and to the activity of PKA in the range of 0.01–0.4 unit/mL with a detection limit of 0.005 unit/mL. Additionally, this assay was applied to the detection of CK2 in serum samples and the inhibition of CK2 and PKA. This work demonstrates that the developed ECL method can provide a sensitive and versatile platform for the detection of kinase activity and drug-screening.  相似文献   

5.
Nitro‐aromatic compounds can be photocatalytically reduced into the corresponding amine‐aromatic compounds using TiO2 as a photocatalyst in the UV/TiO2/holes scavenger and Vis/TiO2/dye‐sensitized systems. In the UV/TiO2/holes scavenger system, reaction substrate alcohols such as methanol could be used as the holes scavengers, and in the Vis/TiO2/dye‐sensitized system, substrate alcohols could be oxidized to the corresponding aldehydes with high selectivity. When methanol was used as the holes scavengers and the illumination time was 6 h, 87.2% of p‐nitrotoluene could be photocatalytically reduced into p‐toluidine. In the Vis/TiO2/dye‐sensitized system, the effect of aromatic alcohols for the photocatalytic reduction of nitrobenzene was better than that of other alcohols. At the same time, aromatic alcohols can be easily oxidized, and the production efficiencies of the corresponding aldehydes were higher than those of other alcohols. The possible reaction mechanisms were also proposed.  相似文献   

6.
Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer‐membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1′) and nearest‐neighbor positions (P2, P2′) and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400‐fold improvement in OmpT catalytic efficiency, with a k cat/K m value of 6.1×106 L mol−1 s−1. Wild‐type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme.  相似文献   

7.
An assay for protein kinase C delta (PKCδ) activity based on the quantification of a synthetic substrate using capillary electrophoresis with laser‐induced fluorescence detection was developed. The peptides labeled with fluorescein isothiocyanate F‐ERK (where ERK is extracellular signal‐regulated kinase) and the phosphorylated form, P‐F‐ERK, were utilized for the method development and validation. The migration time of F‐ERK and P‐F‐ERK were 6.3 ± 0.1 and 8.7 ± 0.2 min, respectively. LOD and LOQ values of F‐ERK were 2 and 6 ng/mL and those of P‐F‐ERK were 4 and 12 ng/mL. The correlation coefficients obtained from two standard curves were approximately 0.99. The reproducibility and accuracy of the method for F‐ERK ranged 1.5–4.7 and 86–109%, respectively, and those for P‐F‐ERK were 1.6–6.1 and 93–109%, respectively. The activity of PKCδ was studied in vitro using the human gastric cancer cell line MKN‐1. The use of PKCδ inhibitor candidates, including G?6983, bisindolylmaleimide II, staurosporine, and rottlerin in the assay resulted in IC50 values of 50 nM, 15 nM, 795 nM, and 4 μM, respectively. Comparison of our assay with a commercial PKC kit revealed that our assay is more adaptable to differing enzyme isoforms. This method has potential for high throughput screening for kinase inhibitors as part of a drug discovery program.  相似文献   

8.
A macroporous TiO2 film (M‐TiO2), which was prepared by burning off the polystyrene microsphere (PS) template from a PS/TiO2 composite film, can provide a large active surface, improve electron‐transport performance, and increase the photocurrent. Furthermore, core–shell–shell CdSeTe@CdS@ZnS quantum dots (QDs) were introduced to sensitize the M‐TiO2 film, which can efficiently broaden the absorption spectra range, separate and transfer charge carriers, reduce recombination loss, and improve photovoltaic response, with a sensitization shell of CdS and a passivation shell of ZnS. A multisignal‐amplified photoelectrochemical platform was fabricated by further modifying this film with a combination of biotin–DEVD–peptide (Biotin–Gly–Asp–Gly–Asp–Glu–Val–Asp–Gly–Cys) (which is specifically cleaved by caspase‐3) and streptavidin‐labeled alkaline phosphatase (SA‐ALP). Under the enzymatic catalysis of ALP with the substrate 2‐phospho‐L ‐ascorbic acid trisodium salt (AAP), ascorbic acid (AA) was generated as a better electron donor, leading to increased photocurrent output. The activity of caspase‐3, which depends on the amount of residual peptide on the electrode, was inversely proportional to the amount of AA. By monitoring the variation of photocurrent caused by AA, caspase‐3 activity and the therapeutic effect of nilotinib (a special medicine of chronic myeloid leukemia, CML) were indirectly detected and evaluated. The photoelectrochemical platform can be used as a potential evaluation system for monitoring caspase‐3 activity and drug effects.  相似文献   

9.
E. coli and Salmonella are two of the most common bacterial pathogens involved in foodborne and waterborne related deaths. Hence, it is critical to develop rapid and sensitive detection strategies for near‐outbreak applications. Reported is a simple and specific assay to detect as low as 1 CFU mL?1 of E. coli in water within 6 hours by targeting the bacteria's surface protease activity. The assay relies on polythiophene acetic acid (PTAA) as an optical reporter and a short unlabeled peptide (LL37FRRV) previously optimized as a substrate for OmpT, an outer‐membrane protease on E. coli. LL37FRRV interacts with PTAA to enhance its fluorescence while also inducing the formation of a helical PTAA‐LL37FRRV construct, as confirmed by circular dichroism. However, in the presence of E. coli LL37FRRV is cleaved and can no longer affect the conformations and optical properties of PTAA. This ability to distinguish between an intact and cleaved peptide was investigated in detail using LL37FRRV sequence variants.  相似文献   

10.
Despite the numerous techniques developed for the studying nanoparticle and peptide interaction nowadays, sensitive and convenient assay in the process of flow, especially to simulate the self‐assembly of quantum dots (QDs) and peptide inflow in blood vessels, still remains big challenges. Here, we report a novel assay for studying the self‐assembly of QDs and peptide, based on CE using a bending capillary. We demonstrate that the semicircles numbers of the bending capillary affect the self‐assembly kinetics of CdSe/ZnS QDs and ATTO‐D3LVPRGSGP9G2H6 peptide. Moreover, benefitting from this novel assay, the effect of the position on the self‐assembly has also been realized. More importantly, we also demonstrate that this novel assay can be used for studying the stability of the QDs–peptide complex inflow. We believe that our novel assay proposed in this work could be further used as a general strategy for the studying nanoparticle–biomolecule interaction or biomolecule–biomolecule interaction.  相似文献   

11.
Suresh Babu CV  Cho SG  Yoo YS 《Electrophoresis》2005,26(19):3765-3772
Signal transduction studies have indicated that Akt is essential for transducing the signals originating from extracellular stimuli. An exploration of the Akt signal transduction mechanism depends on the ability to assay its activation states by determining the ability of Akt to phosphorylate various substrates. This paper describes a CE-based kinase assay for Akt using a UV detection method. The RPRAATF peptide was used as the specific substrate to determine the Akt activity. Under the CE separation conditions used, the phosphorylated and nonphosphorylated forms of the RPRAATF peptide were rapidly resolved in the Akt reaction mixture within 20 min. Using this method for measuring the Akt activity, the incubation time for the Akt reactions as well as the kinetic parameters (KM) were examined. Furthermore, the developed method was applied to a PC12 cell system to assess the dynamics of the Akt activity by examining the effectiveness of the RPRAATF peptide substrate under various cytokine-stimulated environments. These results highlight the feasibility of the CE method, which is a simple and reliable technique for determining and characterizing various enzyme reactions particularly kinase enzymes.  相似文献   

12.
The aim of this study was to analyze the photostability and phototoxicity mechanism of anthracene (ANT) in a human skin epidermal cell line (HaCaT) at ambient environmental intensities of sunlight/UV‐R (UV‐A and UV‐B). Photomodification of ANT under sunlight/UV‐R exposure produced two photoproducts, anthrone and 9,10 anthracenedione. Generation of 1O2, O2?? and ?OH was measured under UV‐R/sunlight exposure. Involvement of reactive oxygen species (ROS) was further substantiated by their quenching with free radical quenchers. Photodegradation of 2‐deoxyguanosine and linoleic acid peroxidation showed that ROS were mainly responsible for ANT phototoxicity. ANT generates significant amount of intracellular ROS in cell line. Maximum cell viability (85%) was reduced under sunlight exposure (30 min). Results of MTT assay accord NRU assay. ANT (0.01 μg mL?1) induced cell‐cycle arrest at G1 phase. RT‐PCR demonstrated constitutive inducible mRNA expression of CYP 1A1 and 1B1 genes. Photosensitive ANT upregulates CYP 1A1 (2.2‐folds) and 1B1 (4.1‐folds) genes. Thus, the study suggests that ROS and DNA damage were mainly responsible for ANT phototoxicity. ANT exposure may be deleterious to human health at ambient environmental intensities reaching the earth’s surface through sunlight.  相似文献   

13.
Herein, porous Bi/Bi2MoO6 nanoparticles have been prepared by a facile in‐situ reduction approach. Moreover, the morphology and Bi content of product could be controlled by varying the reaction time. By controlled fabrication, the desired porous Bi2MoO6 nanostructure with incorporation of Bi was obtained and exhibited high photoelectric and photocatalytic activity. In particular, the samples yield a photocurrent density of 320 μA cm?2, which is 3.2 times that of the pure Bi2MoO6 nanosheet (100 μA cm?2) under the same conditions. UV/Vis diffuse reflectance spectroscopy analysis confirmed the surface plasmon resonance in the as‐prepared porous nanoparticles. The improved photoelectric properties could be the synergistic effect of the porous structure with large surface area and effective electron‐hole separations between Bi and Bi2MoO6.  相似文献   

14.
By using the luminescence from binuclear complexes of TbIII ( Tb2‐L1 and Tb2‐L2 ), phosphorylated Tyr residue in peptides was selectively detected in neutral aqueous solutions. Neither the non‐phosphorylated Tyr, pSer, pThr, nor the other phosphate‐containing biomolecules tested affected the luminescence intensity to any notable extent. Upon the binding of the pTyr to these TbIII complexes, the luminescence from the metal ion was notably promoted, as the light energy absorbed by the benzene ring of pTyr is efficiently transferred to the TbIII center. The binding activity of the binuclear TbIII complexes towards pTyr is two orders of magnitude larger than that of the corresponding mononuclear complex. These binuclear complexes were successfully used for real‐time monitoring of enzymatic phosphorylation of a peptide by a tyrosine kinase.  相似文献   

15.
Three different methods to investigate the activity of a protein kinase (casein kinase, CK2) are described. The phosphorylation of the sequence-specific peptide (1) by CK2 was monitored by electrochemical impedance spectroscopy (EIS). Phosphorylation of the peptide monolayer assembled on a Au electrode yields a negatively charged surface that electrostatically repels the negatively charged redox label [Fe(CN)6]3-/4-, thus increasing the interfacial electron-transfer resistance. The phosphorylation process by CK2 is further amplified by the association of the anti-phosphorylated peptide antibody to the monolayer. Binding of the antibody insulates the electrode surface, thus increasing the interfacial electron-transfer resistance in the presence of the redox label. This method enabled the quantitative analysis of the concentration of CK2 with a detection limit of ten units. The second method employed involved contact-angle measurements. Although the peptide 1-functionalized electrode revealed a contact angle of 67.5 degrees , phosphorylation of the peptide yielded a surface with enhanced hydrophilicity, 36.8 degrees. The biocatalyzed cleavage of the phosphate units with alkaline phosphatase regenerates the hydrophobic peptide monolayer, contact angle 55.3 degrees . The third method to characterize the CK2 system involved chemical force measurements between the phosphorylated peptide monolayer associated with the Au surface and a Au tip functionalized with the anti-phosphorylated peptide antibody. Although no significant rupture forces existed between the modified tip and the 1-functionalized surface (6+/-2 pN), significant rupture forces (multiples of 120+/-20 pN) were observed between the phosphorylated monolayer-modified surface and the antibody-functionalized tip. This rupture force is attributed to the dissociation of a simple binding event between the phosphorylated peptide and the fluorescent antibody (Fab) binding region.  相似文献   

16.
The zinc(II) compound, [Zn3(HL)6]n ( 1 ) (H2L = 3‐hydroxypyridine‐2‐carboxylic acid) was synthesized by a solvothermal reaction of Zn(NO3)2 · 6H2O and 3‐hydroxypyridine‐2‐carboxylic acid as raw materials. The structure of complex 1 was determined by single‐crystal X‐ray diffraction analysis and further characterized by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, as well as powder X‐ray diffraction. X‐ray structure analysis demonstrates that the complex crystallizes in the monoclinic system, space group P21/n. There are three zinc ions in the asymmetric unit, which are either five‐coordinate or six‐coordinate. The asymmetric units are further bridged by the carboxylate of the organic ligands, featuring a 2D framework. The solid state diffuse‐reflectance UV/Vis spectra reveals that complex 1 has semiconducting nature with the energy bandgap (Eg) estimated to be 3.11 eV. The photocatalytic properties of complex 1 in degradation of organic dyes were further investigated. Results showed that the complex could degrade 54 % of the dye methylene blue solution within 120 min under UV irradiation light and reused for five times without the decline of the photocatalytic activity.  相似文献   

17.
We performed on‐plate enzyme and inhibition assays of glucose 6‐phosphate dehydrogenase using thin‐layer chromatography. The assays were accomplished based on different retardation factors of the substrates, enzyme, and products. All the necessary steps were integrated on‐plate in one developing process, including substrate/enzyme mixing, reaction starting, and quenching as well as product separation. In order to quantitatively measure the enzyme reaction, the developed plate was then densitometrically evaluated to determine the peak area of the product. Rapid and high‐throughput assays were achieved by loading different substrate spots and/or enzyme (and inhibition) spots in different tracks on the plate. The on‐plate enzyme assay could be finished in a developing time of only 4 min, with good track‐to‐track and plate‐to‐plate repeatability. Moreover, we determined the Km values of the enzyme reaction and Ki values of the inhibition (Pb2+ Cd2+ and Cu2+ as inhibitors), as well as the corresponding kinetics using the on‐plate assay. Taken together, our method expanded the application of thin‐layer chromatography in enzyme assays, and it could be potentially used in research fields for rapid and quantitative measurement of enzyme activity and inhibition.  相似文献   

18.
Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis.  相似文献   

19.
A new electrochemical immunosensing protocol for sensitive detection of alpha‐fetoprotein (AFP, as a model) in human serum was developed by means of immobilization of horseradish peroxidase‐anti‐AFP conjugates (HRP‐anti‐AFP) onto graphene and nanogold‐functionalized biomimetic interfaces. The low‐toxic and high‐conductive graphene complex provided a large capacity for nanoparticulate immobilization and a facile pathway for electron transfer. With a one‐step immunoassay format, the antigen‐antibody complex was formed between the immobilized HRP‐anti‐AFP on the electrode and AFP in the sample. The formed immunocomplex was coated on the electrode surface, inhibited partly the active center of HRP, and decreased the catalytic reduction of HRP toward the enzyme substrate of H2O2. Under optimal conditions, the decrease of reduction currents was proportional to AFP concentration, and the dynamic range was 1.0–10 ng/mL with a relative‐low detection limit (LOD) of 0.7 ng/mL AFP. Intra‐ and inter‐assay coefficients of variation (CVs) were less than 10 %. The assay was evaluated for clinical human serum samples, including 8 (possible) patients with hepatocarcinoma and 3 normal human sera. Correct identification of negative/positive samples and perfect accordance with results from Elecsys 2010 Electrochemiluminescent Automatic Analyzer as a reference was obtained. Importantly, the graphene and nanogold‐based sensor provided a promising platform for the detection of other biocompounds, and could be further applied for development of other potential electrochemical bio/chemosensors.  相似文献   

20.
2‐Bromopropionic acid 2‐(4‐phenylazophenyl)ethyl ester, 2‐bromopropionic acid 6‐(4‐phenylazophenoxy)hexyl ester (BPA6), 2‐bromopropionic acid‐(4‐phenylazoanilide), and 2‐bromopropionic acid 4‐[4‐(2‐bromopropionyloxy)phenylazo]phenyl ester (BPPE) were used as initiators with monofunctional or difunctional azobenzene for the heterogeneous atom transfer radical polymerization of methyl methacrylate with a copper(I) chloride/N,N,N,N,N″‐pentamethyldiethylenetriamine catalytic system. The rates of polymerizations exhibited first‐order kinetics with respect to the monomer, and a linear increase in the number‐average molecular weight with increasing monomer conversion was observed for these initiation systems. The polydispersity indices of the polymer were relatively low (1.15–1.44) up to high conversions in all cases. The fastest rate of polymerization and the highest initiation efficiency were achieved with BPA6, and this could be explained by the longer distance between the halogen and azobenzene groups and the better solubility of the BPA6 initiator. The redshifting of the UV absorptions of the polymers only occurred for the BPPE‐initiated system. The intensity of the UV absorptions of the polymers were weaker than those of the corresponding initiators in chloroform and decreased with the increasing molecular weights of the polymers in all cases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2358–2367, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号