首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Under certain conditions of liquid flow through rotating channels, the Coriolis force can induce a free surface to be formed. This problem is of practical importance in a Coriolis wear tester, which is used for determining the sliding wear coefficient of wear materials in slurry handling equipment. A deforming Galerkin finite element method is presented for predicting two‐dimensional turbulent free surface mean flow in rotating channels. Reynolds‐averaged Navier–Stokes (RANS) equations are cast into weak(algebraic) form using primitive variables (velocity and pressure). Eddy viscosity is determined via a mixing length model. Velocity is interpolated biquadratically, while pressure is interpolated bilinearly. The kinematic condition is used to form the Galerkin residual for the free surface. The free surface is represented by Hermite polynomials of zeroeth order for continuity of position and slope. Combined Newton's iteration is used to simultaneously solve for the free surface and the field variables. Results of velocity and pressure fields, as well as the free surface are shown to converge with mesh‐size refinement. There is excellent respect for mass conservation. Results are presented for various values of Rossby number (Ro) and height‐based Reynolds number (ReH). Parameter continuation in Ro and ReH space is used to compute solutions at higher values of flow rate and angular velocity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Conventional least‐squares finite element methods (LSFEMs) for incompressible flows conserve mass only approximately. For some problems, mass loss levels are large and result in unphysical solutions. In this paper we formulate a new, locally conservative LSFEM for the Stokes equations wherein a discrete velocity field is computed that is point‐wise divergence free on each element. The central idea is to allow discontinuous velocity approximations and then to define the velocity field on each element using a local stream‐function. The effect of the new LSFEM approach on improved local and global mass conservation is compared with a conventional LSFEM for the Stokes equations employing standard C0 Lagrangian elements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper we study the stability and approximability of the ??1–??0 element (continuous piecewise linear for the velocity and piecewise constant for the pressure on triangles) for Stokes equations. Although this element is unstable for all meshes, it provides optimal approximations for the velocity and the pressure in many cases. We establish a relation between the stabilities of the ??1–??0 element (bilinear/constant on quadrilaterals) and the ??1–??0 element. We apply many stability results on the ??1–??0 element to the analysis of the ??1–??0 element. We prove that the element has the optimal order of approximations for the velocity and the pressure on a variety of mesh families. As a byproduct, we also obtain a basis of divergence‐free piecewise linear functions on a mesh family on squares. Numerical tests are provided to support the theory and to show the efficiency of the newly discovered, truly divergence‐free, ??1 finite element spaces in computation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A new stabilized finite element method is considered for the time‐dependent Stokes problem, based on the lowest‐order P1?P0 and Q1?P0 elements that do not satisfy the discrete inf–sup condition. The new stabilized method is characterized by the features that it does not require approximation of the pressure derivatives, specification of mesh‐dependent parameters and edge‐based data structures, always leads to symmetric linear systems and hence can be applied to existing codes with a little additional effort. The stability of the method is derived under some regularity assumptions. Error estimates for the approximate velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some numerical results are also given, which show that the new stabilized method is highly efficient for the time‐dependent Stokes problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Using a non‐conforming C0‐interior penalty method and the Galerkin least‐square approach, we develop a continuous–discontinuous Galerkin finite element method for discretizing fourth‐order incompressible flow problems. The formulation is weakly coercive for spaces that fail to satisfy the inf‐sup condition and consider discontinuous basis functions for the pressure field. We consider the results of a stability analysis through a lemma which indicates that there exists an optimal or quasi‐optimal least‐square stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, and on the geometry of the finite element in the mesh. We provide several numerical experiments illustrating such dependence, as well as the robustness of the method to deal with arbitrary basis functions for velocity and pressure, and the ability to stabilize large pressure gradients. We believe the results provided in this paper contribute for establishing a paradigm for future studies of the parameter of the Galerkin least square method for second‐gradient theory of incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

7.
We present a projection scheme whose end‐of‐step velocity is locally pointwise divergence free, using a continuous ?1 approximation for the velocity in the momentum equation, a first‐order Crouzeix–Raviart approximation at the projection step, and a ?0 approximation for the pressure in both steps. The analysis of the scheme is done only for grids that guarantee the existence of a divergence free conforming ?1 interpolant for the velocity. Optimal estimates for the velocity error in L2‐ and H1‐norms are deduced. The numerical results demonstrate that these estimates should also hold on grids on which the continuous ?1 approximation for the velocity locks. Since the end‐of‐step velocity is locally solenoidal, the scheme is recommendable for problems requiring good mass conservation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate modeling of interfacial flows requires a realistic representation of interface topology. To reduce the computational effort from the complexity of the interface topological changes, the level set method is widely used for solving two‐phase flow problems. This paper presents an explicit characteristic‐based finite volume element method for solving the two‐dimensional level set equation. The method is applicable for the case of non‐divergence‐free velocity field. Accuracy and performance of the proposed method are evaluated via test cases with prescribed velocity fields on structured grids. By given a velocity field, the motion of interface in the normal direction and the mean curvature, examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In previous studies, the moment‐of‐fluid interface reconstruction method showed dramatic accuracy improvements in static and pure advection tests over existing methods, but this did not translate into an equivalent improvement in volume‐tracked multimaterial incompressible flow simulation using low‐order finite elements. In this work, the combined effects of the spatial discretization and interface reconstruction in flow simulation are examined. The mixed finite element pairs, Q1Q0 (with pressure stabilization) and Q2P ? 1 are compared. Material order‐dependent and material order‐independent first and second‐order accurate interface reconstruction methods are used. The Q2P ? 1 elements show significant improvements in computed flow solution accuracy for single material flows but show reduced convergence using element‐average piecewise constant density and viscosity in volume‐tracked simulations. In general, a refined Q1Q0 grid, with better material interface resolution, provided an accuracy similar to the Q2P ? 1 element grid with a comparable number of degrees of freedom. Moment‐of‐fluid shows more benefit from the higher‐order accurate flow simulation than the LVIRA, Youngs', and power diagram interface reconstruction methods, especially on unstructured grids, but does not recover the dramatic accuracy improvements it has shown in advection tests. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

10.
We investigate a special technique called ‘pressure separation algorithm’ (PSepA) (see Applied Mathematics and Computation 2005; 165 :275–290 for an introduction) that is able to significantly improve the accuracy of incompressible flow simulations for problems with large pressure gradients. In our numerical studies with the computational fluid dynamics package FEATFLOW ( www.featflow.de ), we mainly focus on low‐order Stokes elements with nonconforming finite element approximations for the velocity and piecewise constant pressure functions. However, preliminary numerical tests show that this advantageous behavior can also be obtained for higher‐order discretizations, for instance, with Q2/P1 finite elements. We analyze the application of this simple, but very efficient, algorithm to several stationary and nonstationary benchmark configurations in 2D and 3D (driven cavity and flow around obstacles), and we also demonstrate its effect to spurious velocities in multiphase flow simulations (‘static bubble’ configuration) if combined with edge‐oriented, resp., interior penalty finite element method stabilization techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–Stokes equations. The methodology is based on the pressure correction or projection method. A fractional step approach is used to obtain an intermediate velocity field by solving the original momentum equations with the matrix‐free implicit cell‐centred finite volume method. The Poisson equation derived from the fractional step approach is solved by the node‐based Galerkin finite element method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centres and the auxiliary variable at cell vertices, making the current solver a staggered‐mesh scheme. Numerical examples demonstrate the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady‐state simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a circular cylinder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Many studies involving the shapes and stability of liquid menisci formed during the extraction of a vertical rod from a liquid basin (rod‐in‐free‐surface problem) have been reported in the literature. However, the vast majority of these were conducted under the assumptions that the radius of the basin (R) is infinite and that, at its extremity, both the slope and curvature of the liquid surface are zero. Recently, a few studies involving finite basins have been reported; however, these were conducted under the assumption that the displaced volume of the liquid in the basin is prescribed. In this study, a parametric finite element method was employed to determine the behavior (shape and stability) of liquid menisci formed during the extraction of a vertical rod with circular cross‐section from a liquid contained in a circular basin with finite radius. The plots presented in this paper enable investigators to predict the critical extraction height (a priori) as a function of the radius ratio (R/r) and Bond number (β0gr2/γ) for the case where the contact angle (θ2) at the outer extremity of the basin is 90°. Theoretical and experimental results obtained for arbitrary values of θ2 will be presented in a Part 2 paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered‐mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix‐free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A least‐squares finite element model with spectral/hp approximations was developed for steady, two‐dimensional flows of non‐Newtonian fluids obeying the Carreau–Yasuda constitutive model. The finite element model consists of velocity, pressure, and stress fields as independent variables (hence, called a mixed model). Least‐squares models offer an alternative variational setting to the conventional weak‐form Galerkin models for the Navier–Stokes equations, and no compatibility conditions on the approximation spaces used for the velocity, pressure, and stress fields are necessary when the polynomial order (p) used is sufficiently high (say, p > 3, as determined numerically). Also, the use of the spectral/hp elements in conjunction with the least‐squares formulation with high p alleviates various forms of locking, which often appear in low‐order least‐squares finite element models for incompressible viscous fluids, and accurate results can be obtained with exponential convergence. To verify and validate, benchmark problems of Kovasznay flow, backward‐facing step flow, and lid‐driven square cavity flow are used. Then the effect of different parameters of the Carreau–Yasuda constitutive model on the flow characteristics is studied parametrically. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A cost‐effective method to generate inflow conditions for direct numerical simulations of wall‐bounded flows is presented. The method recycles a finite‐length time series of instantaneous velocity planes extracted from a precursor simulation and has earlier proved efficient for free shear layers. Now a spatially developing plane channel flow is considered. Different durations ts of the time series are tested and compared. Excellent agreement with fully developed channel flow statistics is observed when ts equals or exceeds the large‐eddy turnover time scale. The present results are more realistic than those obtained with synthetic turbulence generation and at the same time substantially cheaper than running an auxiliary simulation in parallel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A finite element method for quasi‐incompressible viscous flows is presented. An equation for pressure is derived from a second‐order time accurate Taylor–Galerkin procedure that combines the mass and the momentum conservation laws. At each time step, once the pressure has been determined, the velocity field is computed solving discretized equations obtained from another second‐order time accurate scheme and a least‐squares minimization of spatial momentum residuals. The terms that stabilize the finite element method (controlling wiggles and circumventing the Babuska–Brezzi condition) arise naturally from the process, rather than being introduced a priori in the variational formulation. A comparison between the present second‐order accurate method and our previous first‐order accurate formulation is shown. The method is also demonstrated in the computation of the leaky‐lid driven cavity flow and in the simulation of a crossflow past a circular cylinder. In both cases, good agreement with previously published experimental and computational results has been obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We present an efficient technique for the solution of free surface flow problems using level set and a parallel edge‐based finite element method. An unstructured semi‐explicit solution scheme is proposed. A custom data structure, obtained by blending node‐based and edge‐based approaches is presented so to allow a good parallel performance. In addition to standard velocity extrapolation (for the convection of the level set function), an explicit extrapolation of the pressure field is performed in order to impose both the pressure boundary condition and the volume conservation. The latter is also improved with a modification of the divergence free constrain. The method is shown to allow an efficient solution of both simple benchmark cases and complex industrial examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The accuracy of numerical simulations of free‐surface flows depends strongly on the computation of geometric quantities like normal vectors and curvatures. This geometrical information is additional to the actual degrees of freedom and usually requires a much finer discretization of the computational domain than the flow solution itself. Therefore, the utilization of a numerical method, which uses standard functions to discretize the unknown function in combination with an enhanced geometry representation is a natural step to improve the simulation efficiency. An example of such method is the NURBS‐enhanced finite element method (NEFEM), recently proposed by Sevilla et al. The current paper discusses the extension of the spatial NEFEM to space‐time methods and investigates the application of space‐time NURBS‐enhanced elements to free‐surface flows. Derived is also a kinematic rule for the NURBS motion in time, which is able to preserve mass conservation over time. Numerical examples show the ability of the space‐time NEFEM to account for both pressure discontinuities and surface tension effects and compute smooth free‐surface forms. For these examples, the advantages of the NEFEM compared with the classical FEM are shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号