首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four stereoisomers of the novel title compounds were prepared by oxidative cyclization of their enantiomerically pure diarylheptanoid precursors by means of the straightforward biomimetic approach presented in the preceding article. The isocentrolobines are the methoxy regioisomers of the natural (+)‐ and (−)‐centrolobines and were characterized for the first time. The synthetic procedure established the absolute configurations and the unambiguous correlation with the chiroptical data. The spectroscopic and the chiroptical data of the isocentrolobines are highly similar to those of the natural products. The single diagnostic parameter that would allow a immediate assignment in the presence of only one of the isomers is the higher melting point (ca. 50°) of the cis‐configured isocentrolobines.  相似文献   

2.
The synthesis of compound 2 and its derivatives 6 and 8 combining a pyrrolidine ring with an 1H‐pyrrole unit is described (Scheme 2). Their attempted usability as organocatalysts was not successful. Reacting these simple pyrrolidine derivatives with cinnamaldehyde led to the tricyclic products 3b, 9b , and 10b first (Scheme 1, Fig. 2). The final, major products were the pyrrolo‐indolizidine tricycles 3a, 9a , and 10a obtained via the iminium ion reacting intramolecularly with the nucleophilic β‐position of the 1H‐pyrrole moiety (cf. Scheme 1).  相似文献   

3.
For the first time 2‐(cis‐caran‐4‐ylsulfanyl)‐1H‐imidazole, 1‐methyl‐2‐(cis‐caran‐4‐ylsulfanyl)‐1H‐imidazole, and 2‐(cis‐caran‐4‐ylsulfanyl)‐1H‐benzimidazole (carane=3,7,7‐trimethylbicyclo[4.1.0]heptane) were synthesized, and the asymmetric oxidation of these compounds was also carried out. It was shown that oxidation by the Bolm system and the modified system of Sharpless lead to corresponding sulfoxides with de values of 91–100%.  相似文献   

4.
The successive treatment of the N,N‐disubstituted 4‐hydroxy‐2‐methylbutanamide 2a with lithium diisopropylamide (LDA) and diphenyl phosphorochloridate (DPPCl) led to the 1‐methylcyclopropanecarboxamide 10 in good yield. This base‐catalyzed cyclization offers a new approach to cyclopropanecarboxamides. Under similar conditions, the N‐monosubstituted 4‐hydroxy‐2‐methylbutanamide 2b gave the 3‐methylpyrrolidin‐2‐one 11 . The structure of the cyclopropanecarboxamide 10 was established by X‐ray crystallography.  相似文献   

5.
Highly reactive 1 : 1 intermediates were produced in the reaction of Ph3P and dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates). Protonation of these intermediates by alcohols (2,2,2‐trichloroethanol, propargyl alcohol (=prop‐2‐yn‐1‐ol), MeOH, benzyl alcohol, and allyl alcohol (=prop‐2‐en‐1‐ol) led to vinyltriphenylphosphonium salts 4 , which underwent a Michael addition reaction with the conjugate base to produce the corresponding stabilized phosphonium ylides 5 (Scheme). Wittig reaction of the stabilized phosphonium ylides with ninhydrin ( 6 ) led to the corresponding densely functionalized 2H‐indeno[2,1‐b]furans 10 in fairly good yields (Table 1). The structures of the final products were confirmed by IR, 1H‐ and 13C‐NMR spectroscopy, and mass spectrometry. The configuration of dimethyl 8,8a‐dihydro‐8‐oxo‐8a‐(2,2,2‐trichloroethoxy)‐2H‐indeno[2,1‐b]furan‐2,3‐dicarboxylate ( 10a ) was established by a single‐crystal X‐ray structure determination, establishing that the one‐pot multicomponent condensation reaction was completely diastereoselective.  相似文献   

6.
The reaction of 1,5‐dihydro‐2H‐cyclopenta[1,2‐b:5,4‐b′]dipyridin‐2‐one ( 3 ) with an alkylamine (butylamine, hexylamine or ethylenediamine) yields, quite unexpectedly and in the absence of catalyst, the novel compound 1,5‐dihydro‐2H‐cyclopenta[1,2‐b:5,4‐b′]dipyridin‐2‐imine ( 4 ) as the sole, analytically pure, solid product, which was fully characterized. The structure of 4 was unequivocally solved by single‐crystal X‐ray‐diffraction analysis. The compound crystallizes in a monoclinic cell (space group P 21/c), with two molecules in the asymmetric unit, held together by intermolecular H‐bonds. Compound 4 could be interesting as a bi‐ or even tridentate ligand, and exhibits a strong fluorescence upon excitation at 310 nm. A mechanism, based on the observed C? N bond cleavage, is proposed.  相似文献   

7.
Various polycyclic arenes, such as naphthalenes, tetrahydroantharacenes, tetrahydrotetracenes, dihydropentacenes, and dihydropentaphenes are prepared from 2‐alkenylphenyl ketones and aldehydes by the catalytic use of copper(II) trifluoromethanesulfonate (Cu(OTf)2) or trifluoromethanesulfuric acid (TfOH).  相似文献   

8.
Functionalized 5‐alkyl‐3‐(trifluoromethyl)phenols were prepared by formal [3+3] cyclization of 1,3‐bis(silyloxy)buta‐1,3‐dienes with 1,1,1‐trifluoro‐4‐(silyloxy)alk‐3‐en‐2‐ones derived from 1,1,1‐trifluoroalkane‐2,4‐diones. The latter were prepared by condensation of the dianion of 1,1,1‐trifluoropentane‐2,4‐dione with alkyl halides.  相似文献   

9.
1,2,3,4‐Tetrahydro‐4,6‐dimethyldibenzothiophene was prepared by coupling 2‐bromo‐3‐methylcyclohexanone with 2‐methylbenzenethiol and annulating the product with the aid of polyphosphoric acid. A mixture of 1,2,3,4‐tetrahydro‐4,6‐dimethyldibenzothiophene and 4,6‐dimethyldibenzothiophene was prepared by coupling 2‐bromo‐3‐methylcyclohex‐2‐en‐1‐one with 2‐methylbenzenethiol and annulating the product with the aid of polyphosphoric acid. 2‐Bromo‐3‐methylcyclohexanone was synthesized by conjugate addition of Me3Al to 2‐bromocyclohex‐2‐en‐1‐one with CuBr as catalyst and 2‐bromo‐3‐methylcyclohex‐2‐en‐1‐one by bromination? elimination of 3‐methylcyclohex‐2‐en‐1‐one. 1,2,3,4,4a,9b‐Hexahydro‐4,6‐dimethyldibenzothiophene was prepared by reduction of 1,2,3,4‐tetrahydro‐4,6‐dimethyldibenzothiophene with Zn and CF3COOH.  相似文献   

10.
The unconventional (5S,7R,8S,9R,10S)‐configurated (?)‐7‐(acetyloxy)‐12,12‐dichloro‐8‐hydroxy‐13,14,15,16‐tetranorlabdan‐11‐one ( 2 ) was synthesized via the HCl‐promoted hydrolysis of (7α)‐7,8‐(isopropylidenedioxy)‐14,15‐dinorlabdan‐11,13‐dione ( 5 ). Possible mechanistic pathways of the reaction are considered. Crystal and molecular structures of the isolated compound 2 were determined by single‐crystal X‐ray structure analysis.  相似文献   

11.
The structures of the main products resulting from photocyclodimerization of the title compound 2 and of other 3‐methyl‐substituted ‘oxacyclohex‐2‐en‐1‐ones’ (=dihydropyranones) were determined by X‐ray crystallography. In connection, the 13C‐NMR chemical shifts of the cyclobutane C‐atoms of these dimers allow a clear differentiation between head‐to‐head and head‐to‐tail regioisomers, all structurally related to those of isophorone ( 1 ).  相似文献   

12.
The reaction of (+)‐car‐2‐ene ( 4 ) with chlorosulfonyl isocyanate (=sulfuryl chloride isocyanate; ClSO2NCO) led to the tricyclic lactams 6 and 8 corresponding to the initial formation both of the tertiary carbenium and α‐cyclopropylcarbenium ions (Scheme 2). A number of optically active derivatives of β‐amino acids which are promising compounds for further use in asymmetric synthesis were synthesized from the lactams (see 16, 17 , and 19 – 21 in Scheme 3).  相似文献   

13.
A series of new optically active 1H‐imidazole 3‐oxides 5 with a substituted acetate group at N(1) as the chiral unit were prepared by the reaction of α‐(hydroxyimino) ketones, α‐amino acid methyl esters, and formaldehyde. In an analogous reaction, ethyl 2‐(hydroxyimino)‐3‐oxobutyrate and 1,3,5‐trialkylhexahydro‐1,3,5‐triazines gave 3‐oxido‐1H‐imidazole‐4‐carboxylates 14 , which easily rearranged into the 2‐oxo derivatives 15 . Selected examples of N‐oxides 5 could be transformed into the corresponding 2,3‐dihydro‐1H‐imidazole‐2‐thione derivatives 10 via a ‘sulfur‐transfer reaction’, and the reduction of the histidine derivative 5i with Raney‐Ni yielded the optically active 2,3‐bis(imidazolyl)propanoate 12 . Furthermore, reaction of the (1H‐imidazol‐1‐yl)acetates with primary amines yielded the corresponding acetamides.  相似文献   

14.
A new germanium complex, cis‐[Ge(pyca)2(OH)2]?2 H2O ( 1 ; pyca=pyridine‐2‐carboxylato), was synthesized by the reaction of [Ge(acac)2Cl2] (acac=acetylacetonato=pentane‐2,4‐dionato) with potassium pyridine‐2‐carboxylate (Kpyca) in H2O/THF. According to the single‐crystal X‐ray diffraction analysis, each Ge‐atom of 1 is coordinated by two pyca ligands and two OH? groups (Fig. 1). These molecules are bonded to each other via a system of H‐bonds resulting in a sheet‐like structure (Fig. 2). The complex is decomposed during heating with stepwise mass loss and formation of GeO2 as final product (Fig. 3).  相似文献   

15.
The reaction between secondary amines, benzoyl isothiocyanate, and dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) in the presence of silica gel (SiO2) led to alkyl 2‐(dialkylamino)‐4‐phenylthiazole‐5‐carboxylates in fairly high yields. The structures of the products were confirmed by their IR, 1H‐ and 13C‐NMR, and mass spectra, and by a single‐crystal X‐ray structure determination.  相似文献   

16.
An efficient protocol has been developed for the preparation of a series of new 3,4‐diaryl‐1H‐pyrazoles, potential pharmacological and agricultural targets, by the reaction of hydrazine hydrate with different natural isoflavones or their derivatives. The target compounds were obtained in good‐to‐excellent yields (80–95%; Table 2) under fairly mild reaction conditions (80°) tolerating various functional groups. The new compounds were fully characterized, and the single‐crystal X‐ray structures of 3,5‐diethoxy‐2‐[4‐(4‐ethoxyphenyl)‐1H‐pyrazol‐3‐yl]phenol ( 26 ) and of the peracetylated compound 2‐{1‐acetyl‐4‐[4‐acetoxy‐3‐(diacetylamino)phenyl]‐1H‐pyrazol‐3‐yl}‐5‐acetoxyphenyl acetate ( 35 ) were solved (Figure).  相似文献   

17.
The synthesis and conformational analysis of model pentapeptides with the sequence Z‐Leu‐Aib‐Xaa‐Gln‐Valol is described. These peptides contain two 2,2‐disubstituted glycines (α,α‐disubstituted α‐amino acids), i.e., Aib (aminoisobutyric acid), and a series of unsymmetrically substituted, enantiomerically pure amino acids Xaa. These disubstituted amino acids were incorporated into the model peptides via the ‘azirine/oxazolone method’. Conformational analysis was performed in solution by means of NMR techniques and, in the solid state, by X‐ray crystallography. Both methods show that the backbones of these model peptides adopt helical conformations, as expected for 2,2‐disubstitued glycine‐containing peptides.  相似文献   

18.
The two regioisomeric 4‐diazo‐2,3,4,5‐tetrahydrofuran‐3‐ones 6 and 7 were prepared via the common intermediate 2,3,4,5‐tetrahydro‐2,2‐dimethyl‐5,5‐diphenylfuran‐3‐one ( 8 ). Diazo transfer with 2,4,6‐triisopropylbenzenesulfonyl azide yielded 6 , whereas 7 was obtained via oxidation of the monohydrazone 12 , which was prepared selectively from tetrahydrofuran‐3,4‐dione 11 . The crystal structures of 6 and 7 have been established by X‐ray crystallography.  相似文献   

19.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole‐3‐oxides 1 with 2,2‐bis(trifluoromethyl)ethene‐1,1‐dicarbonitrile ( 7 , BTF) yielded the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 10 and 2‐(1,3‐dihydro‐2H‐imidazol‐2‐ylidene)malononitriles 11 , respectively, depending on the solvent used. In one example, a 1 : 1 complex, 12 , of the 1H‐imidazole 3‐oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3‐dipolar cycloaddition and subsequent fragmentation. The structures of 11d and 12 were established by X‐ray crystallography.  相似文献   

20.
The reaction of N,N′‐diarylselenoureas 16 with phenacyl bromide in EtOH under reflux, followed by treatment with NH3, gave N,3‐diaryl‐4‐phenyl‐1,3‐selenazol‐2(3H)‐imines 13 in high yields (Scheme 2). A reaction mechanism via formation of the corresponding Se‐(benzoylmethyl)isoselenoureas 18 and subsequent cyclocondensation is proposed (Scheme 3). The N,N′‐diarylselenoureas 16 were conveniently prepared by the reaction of aryl isoselenocyanates 15 with 4‐substituted anilines. The structures of 13a and 13c were established by X‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号