共查询到20条相似文献,搜索用时 15 毫秒
1.
Imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase for hydrophilic interaction/reversed‐phase mixed‐mode chromatography 下载免费PDF全文
Huizhen Wang Lu Zhang Teng Ma Liyuan Zhang Xiaoqiang Qiao 《Journal of separation science》2016,39(18):3498-3504
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds. 相似文献
2.
Dicationic imidazolium ionic liquid modified silica as a novel reversed‐phase/anion‐exchange mixed‐mode stationary phase for high‐performance liquid chromatography 下载免费PDF全文
Min Sun Juanjuan Feng Xiaojiao Wang Huimin Duan Leilei Li Chuannan Luo 《Journal of separation science》2014,37(16):2153-2159
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites. 相似文献
3.
The coupling of RP‐LC to electron capture detection (ECDNi63) is described. To reduce the amount of mobile phase entering into the detector, interfacing was performed via a Scott‐type spray chamber. The performance of RP‐LC/ECDNi63 was evaluated for pharmaceutical analysis and the results show that the system is able to work in a routine environment using columns with 2 mm id and common amounts of the organic modifiers methanol or ACN in the mobile phase. Because of the high sensitivity and selectivity toward electrophilic compounds, the use of this detector opens possibilities for the analysis of impurities down to the 0.05% level of active pharmaceutical ingredients (API). 相似文献
4.
A systematic study of the behavior of several common mobile‐phase volume markers using traditional and polar‐group‐containing reversed‐phase stationary phases is presented. Examined mobile‐phase volume markers include two neutral molecules, uracil and thiourea, concentrated (0.10 M) and dilute (0.0001 M) KNO3, and D2O. Mobile‐phase volumes are examined over the entire reversed‐phase mobile‐phase range of 100% water to 100% methanol or acetonitrile. The behavior of these mobile‐phase volume markers is compared with a maximum theoretical value (i.e. the void volume), as determined by pycnometry. The data suggest that: (i) uracil begins to fail as a mobile‐phase volume marker in mobile phases below about 40% strong solvent for polar group containing phases; (ii) in nearly all cases, the mobile‐phase volume measured dynamically is smaller than the pycnometric void volume; (iii) a significant dependence of measured mobile‐phase volume on salt concentration is seen on the polar endcapped phase, which is not observed on the traditional and embedded polar group phase; and (iv) D2O does not work well as a mobile‐phase volume marker with polar‐group‐containing phases, possibly due to interaction with the stationary phase polar group. 相似文献
5.
Zhibing Wang Na Li Min Wang Yue Wang Lin Du Xiaofeng Ji Aimin Yu Hanqi Zhang Fangping Qiu 《Journal of separation science》2013,36(14):2348-2357
Nine nucleosides and nucleobases, including uracil, adenine, thymine, uridine, adenosine, thymidine, cytidine, guanosine, and cordycepin in natural Cordyceps sinensis, cultured Cordyceps mycelia, and Cordyceps fruiting bodies were extracted by matrix solid‐phase dispersion (MSPD) and determined by HPLC. The experimental conditions for the MSPD extraction were optimized. Florisil was used as dispersant, petroleum ether as washing solvent, and methanol as elution solvent. The Florisil‐to‐sample ratio was selected to be 4:1 and no additional clean‐up sorbent was needed. The calibration curves had good linear relationships (r > 0.9997). The LOD and LOQ were in the range of 12 ~ 79 and 41 ~ 265 ng/mL, respectively. The intra‐ and interday precision were lower than 8.3%. The recoveries were between 61.5 and 93.2%. The present method consumed less sample compared with ultrasonic extraction and heating reflux extraction (HRE). The extraction yields obtained by using the present method are much higher than those obtained by UE and comparable to those obtained by HRE. 相似文献
6.
Angelo Zinellu Salvatore Sotgia Bastianina Scanu Elisabetta Pisanu Manuela Sanna Maria Franca Usai Luca Deiana Ciriaco Carru 《Electrophoresis》2010,31(16):2854-2857
Herein, we report a new CE method to measure adenine nucleotides adenosine 5′‐triphosphate, adenosine 5′‐diphosphate, and adenosine 5′‐monophosphate in red blood cells. For this purpose, 20 mmol/L sodium acetate buffer at pH 3.80 was used as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of 25 kV and an overimposed pressure of 0.2 psi from inlet to outlet. A rapid separation of these analytes in less than 1.5 min was obtained with a good reproducibility for intra‐ and inter‐assay (CV<4 and 8%, respectively) and an excellent analytical recovery (from 98.3 to 99%). The applicability of our method was proved by measuring adenine nucleotides in red blood cells. 相似文献
7.
8.
Shuang Cai Yinghui Chen Wenjie Zhang Xixiang Ying 《Biomedical chromatography : BMC》2013,27(11):1375-1379
The aim of the present study was to characterize the excretion of pure vitexin‐4”‐O‐glucoside (VOG) in mice following oral and intravenous administration at a dose of 30 mg/kg. A sensitive and specific HPLC method with hespridin as internal standard, a Diamonsil C18 column protected with a KR C18 guard column and a mixture consisting of methanol–acetonitrile–tetrahydrofuran–0.1% glacial acetic acid (6:2:18:74, v/v/v/v) as mobile phase was developed and validated for quantitative analysis in biological samples. VOG could be excreted as prototype in excreta including urine and feces after both routes of administration, and the cumulative excretion of VOG was 24.31 ± 11.10% (17.97 ± 5.59% in urinary excretion; 6.34 ± 5.51% in fecal excretion) following oral dosing and 5.66 ± 3.94% (4.78 ± 3.13% in urinary excretion; 0.88 ± 0.81% in fecal excretion) following intravenous dosing. The results showed that the elimination of VOG after the two routes was fairly low, which meant that VOG was metabolized as other forms and the elimination after oral dosing was almost 4.3‐fold that after intravenous dosing. For both routes of administration, VOG excreted as prototype in urine was much more than that in feces, nearly 2.83‐fold for oral administration and 5.43‐fold for intravenous administration, which should be attributed to enterohepatic circulation. Taken together, renal excretion was the dominant path of elimination of VOG for oral and intravenous administration in mice and biliary excretion contributed less. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Stephanie E. Martinez Casey L. Sayre Neal M. Davies 《Biomedical chromatography : BMC》2013,27(1):67-72
A method of analysis for 3‐methoxypterostilbene [trans‐3,3′5‐trimethoxy‐4′hydroxystilbene] in biological fluids is necessary to study pharmacokinetics. A novel and simple high‐performance liquid chromatographic method was developed for the determination of 3‐methoxypterostilbene in rat serum and urine. The internal standard, pinosylvin, was added to 0.1 mL serum or urine (serum proteins were precipitated with cold acetonitrile at ?20°C). Separation was achieved with a Phenomenex® C18 (2) (5 µm, 250 × 4.60 mm) column with ultraviolet detection at 327 nm. The calibration curves in both matrices were linear ranging from 0.05 to 100 µg/mL, and the mean extraction efficiency was >99%. Precision of the assay for both matrices was <12% (RSD) and was within 13% for all points on the calibration curve. The limit of quantification for this method was 0.05 µg/mL. The assay was successfully applied to a preliminary study of 3‐methoxypterostilbene pharmacokinetics in a rat. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
Dan Liu Zhiguo Su Changhai Wang Ming Gu Siliang Xing 《Journal of separation science》2010,33(15):2266-2271
Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one‐step by both reversed‐phase and normal‐phase high‐speed counter‐current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n‐hexane–ethyl acetate–methanol–acetic acid–water (1:10:0.2:0.2:20) by reversed‐phase high‐speed counter‐current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n‐hexane–ethyl acetate–methanol–acetic acid–water (0.2:10:2:1:5) by normal‐phase high‐speed counter‐current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed‐phase and normal‐phase high‐speed counter‐current chromatography to separate high‐polarity of low‐molecular‐weight substances. 相似文献
11.
Monolithic metal–organic framework MIL‐53(Al)‐polymethacrylate composite column for the reversed‐phase capillary liquid chromatography separation of small aromatics 下载免费PDF全文
Kareem Yusuf Ahmed Yacine Badjah‐Hadj‐Ahmed Ahmad Aqel Zeid Abdullah ALOthman 《Journal of separation science》2016,39(5):880-888
A monolithic capillary column containing a composite of metal–organic framework MIL‐53(Al) incorporated into hexyl methacrylate‐co‐ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL‐53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer–Emmett–Teller surface area from 26.92 to 85.12 m2/g. The presence of 1,4‐benzenedicarboxylate moieties within the structure of MIL‐53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π–π interactions. High‐resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96–1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed‐phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. 相似文献
12.
Purine 3′:5′‐cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid‐state conformational details still require investigation. Five crystals containing purine 3′:5′‐cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3′:5′‐cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3′:5′‐cyclic phosphate 0.3‐hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3′:5′‐cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H11N5O7P−·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H10N4O7P−·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP− in (IV) and cIMP− in (V)] are syn conformers about the N‐glycosidic bond, and this nucleobase arrangement is accompanied by Crib—H…Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of syn–anti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter‐nucleotide contacts in (I)–(V) have been systematized in terms of the chemical groups involved. All five structures display three‐dimensional hydrogen‐bonded networks. 相似文献
13.
A new fluorinated stationary phase was prepared through thermal immobilization of poly(methyl‐3,3,3‐trifluoropropylsiloxane) onto 5 μm Kromasil silica particles. The best conditions of immobilization time and temperature were determined through a central composite design and response surface methodologies. Physical–chemical characterization using solid‐state 29Si NMR measurements, infrared spectroscopy and elemental analysis showed that the immobilization process was effective to promote a coating of the support that corresponds to a monolayer of polymer. The stationary phase presents selectivity for positional isomers and good peak shape for basic compounds. 相似文献
14.
《Electrophoresis》2018,39(12):1504-1511
Via the facile ring‐opening reaction of epoxy groups with quinine, a novel polymer monolith with quaternary ammonium for reversed‐phase/strong anion‐exchange mixed‐mode has been fabricated for pressurized capillary electrochromatography (pCEC). Optimization on the preparation of quinine‐modified monoliths has been investigated, and characteristics including morphology, permeability, mechanical stability, reproducibility, and column performance have been also studied. Active quaternary ammonium groups were conveniently produced to generate cationic action sites and stable anodic electroosmotic flow. Multiple interactions including reversed‐phase, strong anion‐exchange, electrostatic repulsion and π–π stacking interactions were obtained. Satisfactory separation capability of various analytes such as alkylbenzenes, polycyclic aromatic hydrocarbons, benzoic acid and its homologs, and β2‐receptor excitants has been achieved. Applied to the real sample, the good resolution of three alkaloids in Corydalis yanhusuo were achieved by pCEC with the quinine‐modified monolith. The results light a potential access to facilely fabricating quaternary ammonium‐functionalized polymer monolith with multiple interactions for efficient electrochromatography profiling of various compounds. 相似文献
15.
3′:5′‐Cyclic nucleotides play an outstanding role in signal transduction at the cellular level but, in spite of comprehensive knowledge of the biological role of cyclic nucleotides, their structures are not established fully. Two hydrated sodium salts of thymidine 3′:5′‐cyclic phosphate (cdTMP, C10H12N2O7P), namely sodium thymidine 3′:5′‐cyclic phosphate heptahydrate, Na+·C10H12N2O7P−·7H2O or Na(cdTMP)·7H2O, (I), and sodium thymidine 3′:5′‐cyclic phosphate 3.7‐hydrate, Na+·C10H12N2O7P−·3.7H2O or Na(cdTMP)·3.7H2O, (II), have been obtained in crystalline form and structurally characterized, revealing one nucleotide in the asymmetric unit of (I) and eight different nucleotides in (II). All the cyclic nucleotide anions adopt a similar conformation with regard to nucleobase orientation, sugar conformation and 1,3,2‐dioxaphosphorinane ring puckering. In (I), no direct inter‐nucleotide hydrogen bonds are present, and adjacent nucleotide anions interact via water‐mediated and Na+‐mediated contacts. In contrast, in (II), direct thymine–phosphate N—H...O inter‐nucleotide hydrogen bonds occur and these are assisted by numerous inter‐nucleotide C—H...O contacts, giving rise to the self‐assembly of cdTMP− anions into three different ribbons. Two of these three ribbons run in the same direction, while the third is antiparallel. 相似文献
16.
Magnetic solid‐phase extraction of angiotensin II receptor antagonists in human urine and plasma with a reversed‐phase/cation‐exchange mixed‐mode sorbent 下载免费PDF全文
Biocompatible magnetic nanoparticles that featured divinylbenzene and sulfonate functionalities were used for the magnetic solid‐phase extraction of five angiotensin II receptor antagonists from human urine and plasma samples based on a reversed‐phase and cation‐exchange mixed‐mode mechanism. Under the optimized extraction conditions, coupled to high‐performance liquid chromatography with fluorescence detection, this proposed method was found to be accurate and precise with relative standard deviations of less than 11.7%, and a good recovery of 80.1–119.5% for both samples. The linear ranges were 0.2–2000 and 0.2–2500 ng/mL along with correlation coefficients above 0.9923 and 0.9928 for urine and plasma samples, respectively. Limits of detection were 0.01–5.74 and 0.01–1.31 ng/mL, respectively. The proposed magnetic solid‐phase extraction based on the magnetic nanoparticles functionalized with divinylbenzene and sulfonate was a reliable and convenient sample pretreatment method and had the potential for isolating and enriching the angiotensin II receptor antagonists in biological samples. 相似文献
17.
Poly(l‐lactic acid)‐modified silica stationary phase for reversed‐phase and hydrophilic interaction liquid chromatography 下载免费PDF全文
Kaname Ohyama Shizuka Takasago Naoya Kishikawa Naotaka Kuroda 《Journal of separation science》2015,38(5):720-723
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions. 相似文献
18.
Kensuke Okusa Yuki Suita Yukio Otsuka Mineo Tahara Tohru Ikegami Nobuo Tanaka Masayoshi Ohira Masakazu Takahashi 《Journal of separation science》2010,33(3):348-358
The effectiveness of several basic compounds for testing silica‐based stationary phases was reviewed by applying them to recent columns for reversed‐phase HPLC. Most octadecylsilylated (C18) stationary phases, prepared as a base‐deactivated material from high‐purity silica gel with endcapping, provided excellent peak shape and column efficiency for the bases including benzylamine and amitriptyline that once caused problems and were subsequently employed for testing silanol activities. However, a cyclic tertiary amine, dextrometorphan, was eluted as an acceptable peak from only a few columns at neutral pH. Such a more sensitive probe is expected to contribute to further improvement of the stationary phase for reversed‐phase HPLC. 相似文献
19.
The biotransformation of nodakenetin (NANI) by rat liver microsomes in vitro was investigated. Two major polar metabolites were produced by liver microsomes from phenobarbital‐pretreated rats and detected by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) analysis. The chemical structures of two metabolites were firmly identified as 3′(R)‐hydroxy‐nodakenetin‐3′‐ol and 3′(S)‐hydroxy‐nodakenetin‐3′‐ol, respectively, on the basis of their 1H‐NMR, MS and optical rotation analysis. The latter was a new compound. A sensitive, selective and simple RP‐HPLC method has been developed for the simultaneous determination of NANI and its two major metabolites in rat liver microsomes. Chromatographic conditions comprise a C18 column, a mobile phase with MeOH‐H2O (40 : 60, v/v), a total run time of 40 min, and ultraviolet absorbance detection at 330 nm. In the rat heat‐inactivated liver microsomal supernatant, the lower limits of detection and quantification of metabolite I, metabolite II and NANI were 5.0, 2.0, 10.0 ng/mL and 20.0, 5.0, 50.0 ng/mL, respectively, and their calibration curves were linear over the concentration range 50–400, 20–120 and 150–24000 ng/mL, respectively. The results provided a firm basis for further evaluating the pharmacokinetics and clinical efficacy of NANI. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversed‐phase chromatography 下载免费PDF全文
Ying W. Lao Kim Mackenzie William Vincent Oleg V. Krokhin 《Journal of separation science》2014,37(14):1788-1796
Organoleptic properties of flaxseed oil deteriorate during storage due to methionine oxidation in its major cyclolinopeptides. Cyclolinopeptide E was previously identified as being responsible for the manifestation of bitter taste with flaxseed oil ageing. We developed a chromatographic procedure to monitor the oxidation of major cyclic peptides in flaxseed oil. We also used liquid chromatography with mass spectrometry and high‐efficiency core–shell reversed‐phase sorbents to study the separation of cyclolinopeptides in detail. The KinetexTM family of stationary phases (C8, C18, phenyl‐hexyl) was tested, along with the standard porous LunaTM C18(2) media. We found that only the phenyl‐hexyl stationary phase allows for complete resolution of major cyclolinopeptides, thus permitting direct UV monitoring of degree of conversion for cyclolinopeptide B into C and L into E. We also report, for the first time, a significant effect of peak splitting for some methionine S‐oxide (Mso) containing cyclolinopeptides, which most likely appear due to diastereomerization. This results in poor separation efficiency for cyclolinopeptides F, G, and E, and gives baseline resolution of diastereomeric pairs for cyclolinopeptides I and P. Thus, a single oxidation of cyclolinopeptide N yields three distinct chromatographic peaks corresponding to cyclolinopeptide T (cyclo‐MsoLMPFFWV, reported for the first time) and pair of cyclolinopeptide I (cyclo‐MLMsoPFFWV) diastereomers. 相似文献