首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The model organism Hydra has been used for molecular studies for more than 20 years, however, its DNA base composition has not been determined yet. We have analyzed DNA and total RNA of the freshwater polyp Hydra magnipapillata with two independent procedures of high accuracy and sensitivity – fluorescence labeling of nucleotides followed by CE‐LIF detection and 32P‐postlabeling. DNA of Hydra was digested either to deoxyribonucleoside‐5′‐monophosphates or deoxyribonucleoside‐3′‐monophosphates selectively conjugated with the fluorescent dye 4,4‐difluoro‐5,7‐dimethyl‐4‐bora‐3a,4a‐diaza‐s‐indacene‐3‐propionyl ethylene diamine hydrochloride (BODIPY FL EDA) separated and detected using CE‐LIF. Both versions of the assay revealed a high A+T composition of 78 and 71%, whereas total DNA methylation (5‐methyldeoxycytidine) was 2.6 and 3.1%. Total Hydra RNA showed highest base levels for guanine (33%) and a level of 1.4% for pseudouracil. All values were in good agreement with those determined by the 32P‐postlabeling method.  相似文献   

2.
Koay ES  Zhu M  Wehr T  Choong ML  Khaw MC  Sethi SK  Aw TC 《Talanta》1998,45(4):673-681
The apolipoprotein E (apo-E) genotype of an individual is of significant relevance in the associated risk of developing cardiovascular disease and late-onset Alzheimer's disease. Detection of the six common apo-E genotypes is based on the restriction fragment length polymorphisms (RFLPs) arising from the abolition or creation of HhaI restriction sites within an amplified target DNA sequence of the apo-E gene. Genomic DNA was extracted from leukocytes, a 230 bp target sequence within the apo-E gene was amplified by polymerase chain reaction (PCR) and digested with HhaI, and the restricted DNA fragments separated by capillary electrophoresis (CE). This was performed on the BioFocustrade mark 3000 automated CE system equipped with an experimental laser-induced fluorescence (LIF) detector (Bio-Rad Laboratories, Hercules, CA), using capillaries (27 cm length, 75 mum i.d.) coated internally with polyaminoacryloylethoxyethanol. The analysis buffer (2xTris borate-EDTA, pH 8.3) was supplemented with a proprietary sieving polymer and 0.05 muM thiazole orange six. Samples were injected electrophoretically. Separations were carried out at 40 degrees C under constant voltage, and the emitted fluorescence detected at 515 nm. Restriction fragment lengths of the cleaved PCR products were estimated from the migration times, with a 20/100 bp ladder (Bio-Rad Laboratories 20/100 bp molecular ruler) serving as reference. Six different reproducible patterns were obtained for the six common apo-E genotypes, with good resolution of the component restriction fragments. The calculated sizes of the separated peaks closely corresponded with the predicted restricted fragment lengths for each specific genotype. We believe this is the first published report demonstrating the feasibility of automating the post-PCR detection of the apo-E RFLPs(2). This methodology overcomes the most labour-intensive step in apo-E genotyping, thus making it amenable to routine clinical application.  相似文献   

3.
Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE‐SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)‐poly(propyleneoxide)‐poly(ethyleneoxide) (PEO‐PPO‐PEO) triblock copolymer as a sieving matrix for CE‐SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO‐PPO‐PEO copolymers, 255‐bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO‐PPO‐PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan? gel. Due to enhanced dynamic coating and sieving ability, PEO‐PPO‐PEO copolymer displayed fourfold enhancement of resolving power in the CE‐SSCP to separate same‐sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high‐resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO‐PPO‐PEO triblock copolymer an excellent matrix in the CE‐SSCP analysis on the microdevice.  相似文献   

4.
The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser‐induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE‐LIF‐REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE‐LIF. The results demonstrate that the CE‐LIF‐REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We report a diagnostic method for Anaplasma phagocytophilum (A. phagocytophilum) infection in cattle using a nested PCR and microchip electrophoresis (ME). A. phagocytophilum causes human granulocytic anaplasmosis and granulocytic ehrlichiosis, which are emerging tick‐borne zoonotic diseases. Nested PCR was used to amplify genomic DNA samples extracted from cattle blood. The amplified PCR products were analyzed under a sieving gel matrix of 0.7% poly(ethyleneoxide) (Mr=8 000 000) in a conventional glass microchip. In the ME assay, A. phagocytophilum was analyzed within 35 s with a relative standard deviation of 1.30% (n=5) using a programmed field strength gradient (PFSG) as follows: 615.3 V/cm for 0–24 s, 66.7 V/cm for 24–34 s, 615.3 V/cm for 34–100 s. The ME‐PFSG assay was clinically validated by comparing the 16S rRNA gene levels obtained by this method with those measured using conventional slab gel electrophoresis performed with ten cattle blood samples suspected of A. phagocytophilum infection. In contrast to slab gel electrophoresis, the proposed ME‐PFSG methodology had increased sensitivity (200–450 pg/μL), a faster analysis time (<35 s), and required a smaller sample volume (~162 fL).  相似文献   

6.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

7.
In this article, we describe the analysis of aptamers for Hg2+ ions through CE with LIF (CE‐LIF) detection using 2% poly(ethylene oxide) solutions containing OliGreen (fluorophore). In the presence of an EOF, DNA strands migrating against the EOF were detected at the cathode end. Four DNA strands – T33, T5C28, T5C5T23, and T15C5T13 – could not be separated through CE‐LIF in the absence of Hg2+. At 0.3 mM Hg2+, however, all four were partially separated within 20 min, with SDs of the migration times all being less than 2.5%. From the CE, fluorescence, and ellipticity data, we concluded that the conformations of these four DNA strands all changed from random‐coil to folded structures as a result of T–Hg2+–T bonding. In addition, we found that this CE approach provided different electropherograms patterns for T7, T15, and T33 in the absence and presence of Hg2+, indicating various interactions of the DNA strands with Hg2+. Using this simple, high‐resolution CE approach, we also demonstrated that adenosine triphosphate has a stronger interaction with the adenosine triphosphate aptamer than with either the platelet‐derived growth factor aptamer or T33. This CE approach holds great potential for screening aptamers for small solutes, studying the catalytic activity of DNAzymes, and evaluating the biological functions of microRNA.  相似文献   

8.
Toxoplasma gondii and other members of the family Apicomplexa have two organelles, in addition to the nucleus, that contain DNA. Herein is reported the separation of the DNA‐carrying organelles from T. gondii tachyzoites, i.e. the mitochondrion and the apicoplast, by CZE. The cells were stained with SYTO9, a dye that exhibit fluorescence when interacting with double stranded nucleic acids (e.g. DNA) and disrupted by nitrogen cavitation. Following careful removal of the heavier cellular material, the remaining lysate was injected on a CE instrument and the DNA‐containing organelles were detected by LIF. The mitochondrion had longer migration time than the apicoplast, and the migration times were comparable in the replicates. This method should potentially also work for other members of the Apicomplexa including Plasmodium falciparum.  相似文献   

9.
A study was conducted on the variability of γ‐globulin mobility in serum protein electrophoresis and its molecular basis. We found that the migration time of γ‐globulins can be reproducibly determined (CV=1.1%) on clinical CE equipment. Moreover, we found a significant difference (p<0.001) in the migration of γ‐globulins between chronic liver disease patients (n=98) and a healthy reference group (n=47). Serum immunoglobulins were purified from these patients' sera using protein L ‐agarose and their glycosylation was studied using CE on a DNA sequencer. This glycomics approach revealed that several non‐sialylated N‐glycans show a moderate Pearson correlation coefficient (r=0.2–0.4) with the migration time of γ‐globulins. Their sialylated structures correlate negatively (r=?0.2 to ?0.3). Immunoglobulins are significantly more sialylated in the healthy reference group compared with the patients (p<0.001). We estimated that sialylation heterogeneity contributes about 36% to the molecular variance (carbohydrates and amino acid composition) that affects the electrophoretic mobility of immunoglobulins. This is the first report on the migration time of γ‐globulins on a clinical CE instrument and its potential clinical value to the routinely analyzed serum protein CE profiles.  相似文献   

10.
A novel method was developed for quantifying the levels of γ‐aminobutyric acid (GABA) in the heads of houseflies (Musca domestica) and diamondback moths (Plutella xylostella (L.)), using capillary electrophoresis with laser‐induced fluorescence detection (CE‐LIF). The GABA in sample was derivatized with 4‐chloro‐7‐nitro‐2,1,3‐benzoxadiazole (NBD‐Cl) prior to CE‐LIF analysis. In total, 32 mmol/L borate buffer, at pH 9.2 and containing 5.3 mmol/L β‐cyclodextrin (β‐CD) and 10.4 mmol/L sodium dodecyl sulfate (SDS), was determined to be the optimum CE background electrolyte (BGE) for GABA analysis. The detection limit of GABA was 0.016 μmol/L. The relative standard deviations (RSDs) of the migration time and peak area of GABA were 1.78 and 4.93%, respectively. The average recoveries of 0.97, 3.88, and 5.83 μmol/L of GABA, each added to the head sample of housefly, ranged from 88.9 to 110.5%. This method is simple and applicable to GABA assays of the heads of insects. With this newly developed CE‐LIF method, the amounts of GABA in the heads of houseflies (M. domestica) and diamondback moths (P. xylostella (L.)) were measured. The results are relevant to the understandings of some insecticides and insecticide‐resistance mechanisms in pests.  相似文献   

11.
CE is a high‐resolution separation technique broadly used in the biotechnology industry for carbohydrate analysis. The standard sample preparation protocol for CE analysis of glycans released from glycoproteins generally requires derivatization times of overnight at 37°C, using ≥100 fold excess of fluorophore reagent, 8‐aminopyrene‐1,3,6‐trisulfonic‐acid, if the sample is unknown, or it is a regulated biotherapeutic product, possibly containing terminal sialic acid(s). In this paper, we report on significant improvements for the standard CE sample preparation method of glycan analysis. By replacing the conventionally used acetic acid catalyst with citric acid, as low as 1:10 glycan to fluorophore molar ratio (versus the typical 1:≥100 ratio) maintained the >95% derivatization yield at 55°C with only 50 min reaction time. Terminal sialic acid loss was negligible at 55°C during the derivatization process, and indicating that the kinetics of labeling at 55°C was faster than the loss of sialic acid from the glycan. The reduced relative level of 8‐aminopyrene‐1,3,6‐trisulfonic‐acid simplified the removal of excess reagent, important in both CE‐LIF (electrokinetic injection bias) and CE‐MS (ion suppression). Coupling CE‐ ESI‐MS confirmed that the individual peaks separated by CE corresponded to single glycans and increased the confidence of structural assignment based on glucose unit values.  相似文献   

12.
A commercial system that is comprised of a CE coupled to an ESI triple quadrupole mass spectrometer was equipped with two capacitively coupled contactless conductivity detectors (C4Ds). The first C4D was positioned inside the original cartridge, and the second C4D was positioned as close as possible to the ESI probe entrance by using a 3D‐printed support. The C4Ds electropherograms were matched to the ESI‐MS electropherogram by correcting their timescales by the factor LT/LD, where LT and LD are the total capillary length and the length until the C4D, respectively. A general approach for method development supporting the simultaneous conductivity and MS detection is discussed, while application examples are introduced. These examples include the use of C4D as a simple device that dismiss the use of an EOF marker, a low‐selectivity detector that continuously provide information about unexpected features of the sample, and even a detector that can be more sensitive than ESI‐MS. The C4D used in this setup proved to have a smaller contribution to the peak broadening than ESI‐MS, which allowed that a C4D, positioned at 12 cm from the inlet of an 80‐cm‐long capillary, could be used to foresee position and shape of the peaks being formed 6.8 times slower at the ESI‐MS electropherogram.  相似文献   

13.
The free solution electrophoretic behavior of DNA‐protein complexes depends on their charge and mass in a certain experimental condition, which are two fundamental properties of DNA‐protein complexes in free solution. Here, we used CE LIF to study the free solution behavior of DNA‐methyl‐CpG‐binding domain protein (MBD2b) complexes through exploring the relationship between the mobilities, charge, and mass of DNA‐protein complexes. This method is based on the effective separation of free DNA and DNA‐protein complexes because of their different electrophoretic mobility in a certain electric field. In order to avoid protein adsorption, a polyacrylamide‐coated capillary was used. Based on the evaluation of the electrophoretic behavior of formed DNA‐MBD2b complexes, we found that the values of (μ0/μ)‐1 were directly proportional to the charge‐to‐mass ratios of formed complexes, where the μ0 and μ are the mobility of free DNA probe and DNA‐protein complex, respectively. The models were further validated by the complex mobilities of protein with various lengths of DNA probes. The deviation of experimental and calculated charge‐to‐mass ratios of formed complexes from the theoretical data was less than 10%, suggesting that our models are useful to analyze the DNA‐binding properties of the purified MBD2b protein and help to analyze other DNA‐protein complexes. Additionally, this study enhances the understanding of the influence of the charge‐to‐mass ratios of formed DNA‐protein complexes on their separation and electrophoretic behaviors.  相似文献   

14.
A new sensitive analytical method using capillary electrophoresis with laser induced fluorescence (CE‐LIF) was applied for the simultaneous detection of DNA methylation and hydroxymethylation levels in human cancers of different origin. DNA hydroxymethylation, measured as 5‐hydroxymethylcytosine (5hmC) levels, was decreased in gliomas with mutation in the isocitrate dehydrogenase 1 (IDH1) gene when compared to IDH1‐wildtype gliomas. Independent from IDH1 mutation, 5hmC levels were decreased in lung carcinomas when compared to normal lung tissue. Reduced DNA hydroxymethylation was also observed upon dedifferentiation in cultured murine embryonic fibroblasts. Our data show that reduced DNA hydroxymethylation is related to cellular dedifferentiation and can be detected in various types of cancers, independent from the IDH1 mutation status. Quantitative determination of altered 5hmC levels may therefore have potential as a biomarker linked to cellular differentiation and tumorigenesis.  相似文献   

15.
In this study, a rapid and sensitive method is described for the catecholamines detection in rat brain. CE with LIF detection for the determination of FITC derivatized catecholamines (dopamine, epinephrine, and norepinephrine) was demonstrated. Conventional water bath and microwave‐assisted derivatization methods were employed and a significant reduction in the derivatization time from 2 h for the conventional water bath at room temperature (ca. 25°C) to 2 min for the microwave‐assisted derivatization was achieved. Online sample concentration of field‐amplified sample stacking (FASS) method was employed to achieve higher sensitivities (the detection limits obtained in the normal injection mode ranged from 2.6 to 4.5 ng L?1 and in the FASS mode ranged from 22 to 34 pg L?1). Furthermore, this microwave‐assisted derivatization CE–LIF method successfully determined catecholamines in rat brain with as low as 100 ng L?1 (FASS mode) to 10 μg L?1 (normal injection mode). This CE–LIF method provided better detection ability when compared to the best reports on catecholamines analyses.  相似文献   

16.
A CZE with near‐infrared (NIR) LIF detection method has been developed for the analysis of six low molecular weight thiols including glutathione, homocysteine, cysteine, γ‐glutamylcysteine, cysteinylglycine, and N‐acetylcysteine. For this purpose, a new NIR fluorescent probe, 1,7‐dimethyl‐3,5‐distyryl‐8‐phenyl‐(4'‐iodoacetamido)difluoroboradiaza‐s‐indacene was utilized as the labeling reagent, whose excitation wavelength matches the commercially available NIR laser line of 635 nm. The optimum procedure included a derivatization step of the free thiols at 45°C for 25 min and CZE analysis conducted within 14 min in the running buffer containing 16 mmol/L pH 7.0 sodium citrate and 60% v/v ACN. The LODs (S/N = 3) ranged from 0.11 nmol/L for N‐acetylcysteine to 0.31 nmol/L for γ‐glutamylcysteine, which are better than or comparable to those reported with other derivatization‐based CE‐LIF methods. As the first trial of NIR CE‐LIF method for thiol determination, the practical application of the proposed method has been validated by detecting thiols in cucumber and tomato samples with recoveries of 96.5–104.3%.  相似文献   

17.
Single strand conformation polymorphism (SSCP) analysis of the N-ras oncogene was achieved by capillary electrophoresis with a laser-induced fluorescence detector (CE-LIF) using methylcellulose as a molecular sieving agent. The PCR-amplified N-ras oncogene, which is known to have a point mutation at codon 61 in the neuroblastoma, was investigated by CE-LIF combined with SSCP (SSCP-CE-LIF). A mixture of wild- and mutant-type single strand DNA fragments (103 bp) of the N-ras oncogene was separated by buffer solution containing 1.0% methylcellulose and 0.2 microM fluorescent dye (YO-PRO-1) at 25 degrees C. The SSCP-CE-LIF technique gave good resolution for wild- and mutant-type single strand DNA fragments with separation completed within 7 min. SSCP analysis using a CE system with a LIF detector was successfully applied to the detection of the one point mutation on the N-ras oncogene.  相似文献   

18.
《Electrophoresis》2017,38(3-4):494-500
An easy‐to‐do paper‐based solid‐phase microextraction (p‐SPME) was developed for determination of 8‐hydroxy‐2’‐deoxyguanosine (8‐OHdG) in urine sample by CE‐LIF. Small piece of filter paper was used as a solid phase to extract 8‐OHdG from urine sample. Its primary mechanism is based on the hydrogen‐bonding interaction between 8‐OHdG and cellulose molecules. The effects of the pH of the sample solution, extraction time, and temperature on the peak area of the analyte were investigated in order to obtain the optimal p‐SPME conditions. Comparing with the untreated sample, the p‐SPME can significantly reduce the interference to the separation of 8‐OHdG by CE‐LIF. Meanwhile, the p‐SPEM can provide more than three times concentrated effect. The developed method was evaluated according to an FDA guideline for biological analysis. The precisions (RSD%, n = 5) of the peak area and migration time of the analyte at three different concentrations were within 3.02–5.82% and 0.92–1.58%, respectively. The limit of identification of the method is about 5 nM according to the significant difference between two sets of the samples with and without spiking the standard (Student's t ‐test, p < 0.05). Good linearity was obtained in the range of 10–1000 nM (R 2>0.99) based on the standard addition. The recoveries at three different concentrations were within 99.8–103.5%. The results of the real sample analysis are consistent with those reported in our previous paper (Electrophoresis 2014, 35, 1873–1879).  相似文献   

19.
In this work, CE‐LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l ‐carnosine and l ‐alanyl‐glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE‐LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20–300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l ‐carnosine, l ‐alanyl‐glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L.  相似文献   

20.
An LIF detector was integrated into a CE system which uses a ball lens to focus the laser beam on the CE capillary. The detector employs an ellipsoid that is glued on the capillary window, to permit the collection of the fluorescence in the capillary. This 'trapped' fluorescence stays in the capillary because the angle of the silica/air interface is greater than the critical angle. The performance of this new detector setup is found to be identical to the collinear setup using the same ball lens. An application to the analysis of FITC-labeled IgG was optimized using a 14 cm effective length capillary. The LOD of an FITC-labeled IgG2 at an excitation wavelength of 488 nm was 150 pg/mL, which was 10 times better than the LOD recorded with slab gel silver staining. Using a tetramethylrhodamine (TAMRA)-labeled IgG2 and a 532 nm excitation wavelength the LOD is 50 pg/mL. The electropherograms of four different commercial FITC conjugates of IgG were studied. The presence of aggregates was observed in two samples while close kinetics of reduction was observed between free aggregates and high aggregates concentration samples. The integrated LIF detector provides an extremely powerful and convenient tool for antibody analysis and should be useful for therapeutic MAb control in pharmaceutical facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号