首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(thioether amide)s containing pyridine moieties in their backbone were obtained by the polyaddition of 2,6-bis(acrylamido)pyridine (2,6-BAAP), derived from 2,6-diaminopyridine and acryloyl chloride, with an aromatic or aliphatic dithiol. The influence of various reaction conditions on the polyaddition was investigated in comparison with the polyaddition of 1,3-bis (acrylamido)benzene (1,3-BAAB). 2,6-BAAP gave the polymer even in the absence of any initiator at lower temperatures while 1,3-BAAB did not, which was attributable principally to intramolecular base catalysis of the pyridine moieties. Basic additives effectively promoted the reaction rate and increased the chain length. Those facts and NMR of the resulting polymers indicated Michael-type polyaddition. The polymers from 2,6-BAAP were amorphous and gave transparent and tough films having a high refractive index exceeding 1.7. GPC and DSC characterizations were also made. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Introduction  Manganeseionsplayanimportantroleinthelight in ducedoxidationofwatertomolecularoxygeninphotosys temII (PSII)ofgreenplants.1 3Inrecentyears ,man ganesecomplexesofpolypyridineligands ,suchasbipyri dine ,1,10 phenanthrolineand 2 ,2′:6′,2″ terpyridine ,havehadconsiderableattentionasthecomplexesformedareusefulmodelsformanganese containingbimolecu lars .4 6 Therefore ,synthesisandcharacterizationofman ganeseinitsvariousoxidationstates ,withvariousligandtypesandnuclearities ,hav…  相似文献   

3.
The IR spectroscopy has been used to study models of polyurethanes containing different hard segments. The spectra of toluene-2,6-bis(methyl) and 4,4′-diphenylmethane-bis(methyl) carbamates at different temperatures were studied. The absorption curves of the free and associated carbamate molecules were compared with experimental IR spectra. The characteristic features of toluene-2,6-bis(methyl) carbamate and methyl-N-methyl carbamate clusters were revealed. The IR spectra for the two most stable toluene-2,6-bis(methyl) carbamate conformations were compared. The origin of the multiplet structure of bands in the experimental IR spectra of polyurethanes was discussed. The results obtained can be used for the analysis of the chemical and physical transformations in urethanes and polyurethanes.  相似文献   

4.
Titanium(IV) Complexes with Tridentate Diacidic Ligands. Crystal Structure of Bis[2,6-diphenacylpyridinato(2–)]titanium(IV) The titanium(IV) chelates with 2,2′-dihydroxy-azobenzene, salicylaldehyde-2-hydroxyanil, 2-(2′-hydroxyphenyl)-8-quinolinol, 2,6-diphenacylpyridine as well as with aroylhydrazones of salicylaldehyde, benzoylacetone and thenoyltrifluoroacetone were synthesized by ligand exchange reactions of titanium(IV)-isopropoxide. The compounds are red or black in colour and were identified by distinct molecular peaks in the mass spectra. The crystal and molecular structure was determined for bis[2,6-diphenacylpyridinato(2–)] titanium(IV). Crystallographic data see “Inhaltsübersicht”.  相似文献   

5.
Syntheses and Properties of Some New Tris(fluorophenyl)antimony and -bismuth Compounds. Crystal Structure of Tris(2,6-difluorophenyl)bismuth (2,6-F2C6H3)3Bi, (2,4,6-F3C6H2)3Bi, and (2,6-F2C6H3)3Sb are prepared via Grignard reactions with BiBr3 and SbBr3, respectively. The syntheses and properties of the new compounds and the crystal structure of (2,6-F2C6H3)3Bi are described. From the reaction of BiBr3 with Ag(OCOC6H3F2) the bismuth benzoate Bi(OCOC6H3F2)3 is formed in 83% yield. Attempts to prepare (2,6-F2C6H3)3Bi by decarboxylation of the bismuth benzoate failed.  相似文献   

6.
A novel coordination polymer [Na2Pd(2,6-pydc)2(H2O)6]n (2,6-H2pydc = 2,6-pyri- dinedicarboxylic acid) has been synthesized and its crystal structure was determined by single-crystal X-ray diffraction. The crystal belongs to the monoclinic system, space group P21/c, with a = 11.962(2), b = 6.5552(13), c = 12.673(3) , β = 91.72(3)°, V = 993.3(3) 3, Z = 2, Mr = 590.68, Dc = 1.975 g/cm3, μ = 1.059 mm-1, F(000) = 592, the final R = 0.0211 and wR = 0.0454. In the crystal the Pd(II) ion adopts a distorted four-coordinated square-planar geometry and bonds to two bidentate 2,6-pyridinedicarboxylate molecules through caronyl oxygen and pyridine nitrogen atoms. The title complex exhibits a novel three-dimensional network structure.  相似文献   

7.
Pentagonal-bipyramidal isothiocyanato Co(II) and Ni(II) complexes with condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized and characterized by elemental analyses, IR and UV–vis spectra, molar conductivity, and magnetic susceptibility. Crystal structures of the Co(II) and Ni(II) complexes were also determined. Antimicrobial activities of the ligand and metal complexes were examined.  相似文献   

8.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

9.
Isothiocyanate complexes of Zn(II) and Cd(II) with the condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized, characterized, and their antimicrobial activities were evaluated. The structures of the complexes were determined by elemental analysis, IR, and NMR spectroscopy. The crystal structure of the Zn(II) complex was also determined. Quantum-chemical calculations of the geometry and total energy of isomers of 2,6-diacetylpyridine-bis(trimethylammoniumacetohydrazone) were performed in vacuum and methanol solution, with the aim to explain conformational behavior and E/Z isomerism of this compound. DFT calculations of the molecular structures and the relative stabilities of linkage isomers of the Cd(II) complex showed that the isomer with N–Cd–N coordination of SCN? is the most stable. Complexes of Zn(II) and Cd(II) exhibited low to moderate activity against the tested microbial strains.  相似文献   

10.
二(芳氧基)稀土(Ⅱ)配合物催化ε-己内酯开环聚合   总被引:2,自引:0,他引:2  
系统地研究了二(2,6 二叔丁基 4 甲基酚基)钐[(ArO)2Sm(THF)4]催化ε 己内酯的开环聚合,发现它具有很高的催化活性并显示“活性”聚合的特点,在甲苯中,当[M]/[I]=2000(摩尔比),60℃,1h,转化率可达98%.并比较了不同的两价稀土化合物的催化活性.通过核磁分析末端基结构的方法,研究了(ArO)2Sm催化己内酯开环聚合的引发机理,发现催化剂首先与己内酯反应,生成三价烯醇式稀土化合物,后者引发己内酯聚合.  相似文献   

11.
Reaction of benzotriazole with 2,6-bis(bromomethyl)pyridine and 2,6-pyridinedicarbonyl dichloride yields the tridentate ligands 2,6-bis(benzotriazol-1-ylmethyl)pyridine (1) and 2,6-bis(benzotriazol-1-ylcarbonyl) pyridine (2). The molecular structures of the ligands were determined by single-crystal X-ray diffraction. These ligands react with CrCl3(THF)3 in THF to form neutral complexes, [CrCl3{2,6-bis(benzotriazolyl)pyridine-N,N,N}] (3, 4), which are isolated in high yields as air stable green solids and characterized by mass spectra (ESI), FTIR spectroscopy, UV–Visible, thermogravimetric analysis (TGA), and magnetic measurements. After reaction with methylaluminoxane (MAO), the chromium(III) complexes are active in the polymerization of ethylene showing a bimodal molecular weight distribution. A DFT computational investigation of the polymerization reaction mechanism shows that the most likely reaction pathway originates from the mer configuration when the spacer is CH2 (complex 3) and from the fac configuration when the spacer is CO (complex 4).  相似文献   

12.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

13.
Summary. A synthesis of 3-(4-methoxycarbonyl-2,6-dinitrophenyl)indole, its 2,6-diamino analog, and 3-(2-amino-4-trifluoromethyl-6-nitrophenyl)indole is described. 4-(Trifluoromethyl)phenyl derivatives exhibit higher antibacterial potency than the former 4-(methoxycarbonyl)phenyl homologs, while 3-(4-trifluoromethyl-2-nitrophenyl)indole was the most active agent in the series, with MIC ≈ 7 μg/cm3 against E. coli and S. aureus.  相似文献   

14.
A series of new iron(II) complexes bearing tridentate pyrazine-bis(2,6-arylimino) ligands where the aryl groups are 1-naphthyl, 2,6-dimethylphenyl, and 2,6-diisopropylphenyl have been used as ethylene polymerization catalysts after activation with alkylaluminiums. The new complexes display a lesser catalytic activity than those bearing the corresponding pyridine-bis(2,6-arylimino) ligands. Varying the steric bulkiness of the aromatic groups in the tridentate ligands and the polymerization conditions affects the catalytic productivity.  相似文献   

15.
Two novel ligands containing two pyridine-2,6-dicarboxylic acid conjugative units, 4-(2-(2,6-dicarbox-ypyridin-4-yl)vinyl)pyridine-2,6-dicarboxylic acid (L(1)) and 4-(4-(2-(2,6-dicarboxypyridin-4-yl)vinyl)styryl)pyridine-2,6-dicarboxylic acid (L(2)) and their complexes with Tb(III) have been synthesized and characterized by elemental analysis, IR spectra and NMR. The ligand synthetic route was optimized and the yield of ligands reached over 78% as a result of the Wittig-Horner reaction used. The fluorescent intensities of these complexes with corresponding complexes with single pyridine-2,6-dicarboxylic acid unit was compared. The result has shown that the ligands with two pyridine-2,6-dicarboxylic acid units are the excellent sensitizers to lanthanide fluorescence. Also, we investigated the fluorescence properties of these complexes in different solution and in different pH value. Due to their excellent green-emmiter, they would be a potential candidate material for applications in organic light-emitting devices and medical diagnosis.  相似文献   

16.
Yusaku Eda 《Tetrahedron》2009,65(1):282-235
2,6-Disubstituted-3,5-dimethylpyrazines have been synthesized via biased acetal synthesis from symmetric 2,3,5,6-tetrakis(chloromethyl)pyrazine. The pyrazine ligands coordinated to trans-dichloropalladium(II) at the nitrogen whose neighboring carbons were connected to less hindered methyl groups. 2,6-Bis(porphyrin)-substituted pyrazine bound C60 to yield 1:1 inclusion complex. The binding of C60 with the pyrazine ligand and its zinc complex was determined by ESI-MS, NMR, and fluorescence spectroscopic analyses.  相似文献   

17.
The (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)V(OiPr)3] was demonstrated to undergo ligand exchange reaction with one or two equivalents of 2,6‐difluorophenol, affording the (arylimido)vanadium(V) compounds, [(p‐MeOC6H4N)V(OiPr)2(O‐2,6‐F2Ph)] and [(p‐MeOC6H4N)V(OiPr)(O‐2,6‐F2Ph)2]. Their X‐ray crystallographic analyses elucidated the μ‐isopropoxido‐bridged dimeric structures, wherein each vanadium atom has a trigonal‐bipyramidal arrangement with the imido and bridging isopropoxide ligands in the apical positions. The isopropoxide ligand was selectively employed as a bridging ligand between two central vanadium atoms. On the other hand, the reaction of the (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)VCl3] and three equivalents of lithium 2,6‐difluorophenoxide gave the (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)V(O‐2,6‐F2Ph)3]. In the crystal packing, the thus‐obtained compound showed a distorted trigonal‐bipyramidal environment at the vanadium atoms with the μ‐phenoxido‐bridged dimeric structure, wherein the 2,6‐difluorophenoxide ligand was found to serve as a bridging ligand.  相似文献   

18.
2,6-Bis(4-aminophenoxy)naphthalene (2,6-BAPON) was synthesized in two steps from the condensation of 2,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,6-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of new polyamides were synthesized by the direct polycondensation of 2,6-BAPON with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiCl using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yields with inherent viscosities of 0.62–2.50 dL/g. Most of the polymers were soluble in aprotic dipolar solvents such as N,N-dimethylacetamide (DMAc) and NMP, and they could be solution cast into transparent, flexible, and tough films. The casting films had yield strengths of 84–105 MPa, tensile strengths of 68–95 MPa, elongations at break of 8–36%, and tensile moduli of 1.4–2.1 GPa. The glass transition temperatures of the polyamides were in the range 155–225°C, and their 10% weight loss temperatures were above 505°C in nitrogen and above 474°C in air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2147–2156, 1997  相似文献   

19.
In this paper,it was found that Ru(H2bpp)2(PF6)2(H2bpp = 2,6-bis(pyrazol-3-yl)pyridine) complex had excellent electrochemical activity at the carbon paste electrode in the buffer solution of Tris-HCl(pH 7.0) with a couple reversible redox peaks at 0.296 V and 0.348 V,respectively.Voltammetry was used to investigate the electrochemical behavior of Ru(H2bpp)2(PF62 and the interaction between Ru(H2bpp)2(PF62 and bovine serum albumin(BSA).In the present of BSA,the oxidation peak current of Ru(H2bpp)2(PF62 complex was decreased linearly and the decrease of oxidation peak current of Ru(H2bpp)2(PF62 is proportional to BSA concentration from 0.1 to 2.5 mg/L with a detection limit 0.02 mg/L.  相似文献   

20.
The synthesis of tricyclic compounds on functionalized cyclam core is described. The addition of four methyl acrylate molecules and consecutive condensation of this derivative with ethylenediamine resulted in formation of 1,4,8,11-tetrakis(2-(N-(2-aminoethyl)carbamoyl)ethyl)-1,4,8,11-tetraazacyclotetradecane (3). Compound 3 was the substrate for further condensation with dialdehydes: iso-phthaldialdehyde and 2,6-pyridinedicarbaldehyde, resulting in spontaneous macrocycle ring closure to give tricyclic derivatives: 1,11:4,8-bis(benzene-1,3-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (4) in the reaction of 3 with iso-phthaldialdehyde and three isomers: 1,4:8,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5A), 1,11:4,8-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5B), and 1,8:4,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5C) when 2,6-pyridinedicarbaldehyde was used. The compounds 4, 5B, and 5C were identified crystallographically. The isolated 5A converted in solution into the mixture of 5B and 5C as monitored by the 1H NMR spectroscopy. The tricycle 5 is able to accept two manganese(II) metal ions by reacting with manganese(II) dichloride with simultaneous diprotonation of 5. Structure of the resulting Mn2(5BH2)Cl6·(CH3OH)2(H2O)2 was determined crystallographically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号