首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experimental and theoretical study of self-assembly and gel formation processes in an aqueous solution of L-cysteine and silver nitrate (CSS) is performed. A method to obtain CSS-based hydrogel is described. Its characteristic feature is the formation of a spatial gel network at a low concentration of the dispersed phase (~0.01%) and the thixotropic behavior. The experimental examination of this system provides the formulation of a phenomenological model of the gel formation. Based on it, an atomistic computer model is made to verify our assumptions. It is shown that due to the formation of donor-acceptor sulfur-silver bonds there form clusters from silver mercaptide (SM) zwitterions, from which in turn filamentous aggregates form. An analysis of the molecular configurations formed shows that the filamentous aggregates are stabilized by the interaction of 3 ?NH 3 + and ?C(O)O? groups belonging to SM zwitterions in the composition of the neighboring clusters. The obtained conclusions underlie the mesoscopic model based on which we managed to illustrate the processes of generation and growth of filamentous aggregates in large spatial scales.  相似文献   

2.
Endohedral clusters formed from the Zintl ions Pb102? and Pb122? are particularly stable and therefore suitable for the assembly of larger aggregates. We therefore investigate the formation of Mg‐doped lead clusters in the gas phase, and demonstrate that a whole series of new molecular cage clusters of lead can be generated by encapsulation of magnesium. Mass spectrometry reveals that some of the cluster compounds, with one and two Mg atoms attached to the lead clusters, display large intensities compared to the pure lead clusters, which indicates that the compound clusters are particularly stable. The magnesium‐doped lead‐cluster assemblies were further analyzed within a molecular‐beam electric deflection experiment. Almost vanishing permanent dipole moments for MgPb10–16 support the idea that a single Mg atom could be encapsulated within a highly symmetric lead cage, which results in structures with not only enhanced stability but also increased symmetry compared to the pure lead clusters PbN.  相似文献   

3.
Long-lived (hours to days) silver clusters, Ag 4 2+ , Ag 4 + , Ag 8 2+ , etc., are formed upon the radiation-induced reduction of Ag+ ions in aqueous solutions containing sodium polyphosphate. The efficiency of the cluster formation decreases and the stability of the clusters increase with a rise in the concentration of the polymeric stabilizer. In the course of the aggregation of clusters, their sizes increase, quasi-metallic particles emerge, and the process terminates with the formation of silver nanoparticles. The mechanism of silver nucleation upon the radiation-induced reduction of silver ions in aqueous solutions is discussed.  相似文献   

4.

The evolution of spectral and luminescent properties of Ag-containing composite coatings prepared by liquid technique has been studied. Double stabilization allows forming thin oxide films containing luminescent small Agn (n?<?5) molecular clusters using the liquid technique. These clusters are non-stable intermediate products during the formation of Ag nanoparticles from the ions and neutral atoms. It was found that small luminescent Agn molecular clusters (n?<?5) formed in the solutions at the presence of polyvinylpyrrolidone (PVP) remain in PVP/metal nitrates composite coatings and in the calcined metal oxide coatings. Spatial separation of small Ag molecular clusters in the coatings by the oxide nanoparticles of ZnO and MgO prohibits silver clusters growth and non-luminescent silver nanoparticles formation and allows saving coatings’ luminescence properties during thermal treatment.

  相似文献   

5.
The complex formation of silver(I) has been studied with the anions of simple mercaptans RSH which have been rendered soluble by replacing some H in the substituent R by OH. All equilibria constants refer to a solvent of ionic strength μ = 0,1 and 20°C. Monothioglycol HO? CH2? CH2? SH (pK = 9.48) forms an amorphous insoluble mercaptide {AgSR} (s), ionic product [Ag+] [SR?] = 10?19.7. The solution in equilibrium with the solid contains the molecule AgSR at a constant concentration of 10?6.7 M which furnishes the formation constant of the 1:1-complex: K1 = 1013. 0. The solid is soluble in excess of mercaptide (AgSR+SR? → Ag(SR)2?: K2 = 104. 8) as well as in an excess of silver ion (AgSR + Ag+ → Ag2SR+K ≈? 106). With the bulky monothiopentaerythrite (HO? CH2? )3C? CH2? SH (pK = 9.89) no precipitation occurs with silver when the mercaptan concentration is below 10?3. 2M. A single polynuclear Ag10(SR)9+10.9 = 10175) is formed in acidic solutions which breaks up with the formation of Ag2SR+2.1 = 1019.0) when an excess of silver ion is added. Below the mononuclear wall ([RS]total < 10?6) Ag2SR+ is formed via the mononuclear AgSR (K1 = 1013). At higher mercaptan concentrations ([RS]tot > 10?3.2) an amorphous precipitate is formed which has almost the same solubility product as silver thioglycolate ([Ag+] [SR?] = 10?19.1). Apparently silver(I) forms with mercaptans always the complexes Ag2SR+, AgSR and Ag(SR)2?. Above the mononuclear wall, these species condense to chain-like polynuclears which are cations Ag(SRAg)n+ in presence of an excess of Ag+, and anions SR (AgSR)n? when the concentration [RS?] is larger than [Ag+]. Usually n becomes rapidly very large as soon as the condensation starts (n → ∞: precipitate). The decanuclear Ag(SRAg)9+ formed with thiopentaerythrit is somewhat more stable than the shorter chains (n < 9) and larger chains (n > 9), because it can tangle up to a ball by coordination of bridging mercapto-sulfur to the terminal silver ions (figure 12, page 2179). This ball seems to be further stabilized by hydrogen bonds between the many alcoholic OH groups of the substituent R = (HO? CH2)3C? CH2? . The stability of the bonds Ag? S, however, is little influenced by the substituent R which carries the mercaptide sulfure.  相似文献   

6.
Structural transformations occurring in aqueous L-cysteine?silver-nitrate mixed solutions (CSSs) upon the addition of an initiating salt have been studied within the framework of mesoscopic simulation using the dissipative particle-dynamics method. Diffusion of silver mercaptide clusters is decelerated, and metastable chain aggregates thereof are formed in a narrow concentration range of the salt, probably due to the transition into a gel-like state. The results obtained are in qualitative agreement with the experimentally observed behavior of CSSs.  相似文献   

7.
In this work, SiO2 samples with silver, prepared using the sol-gel method, were analyzed after being thermally treated in air in the range of 100 to 800°C. The sol-gel starting solutions were prepared by mixing tetra-ethyl-orthosilicate (TEOS), water and ethanol. Samples with 4 different H2O/TEOS molar ratios (3.3, 5, 7.5 and 11.7 respectively) and with different nominal Ag concentrations were prepared (1, 2 and 4%vol. of Ag). It was found that upon annealing, different silver spices were formed, such as Ag2 +, Ag+, Ag°, and metallic silver aggregates. The identification of these spices was carried out by means of X-ray diffraction, Electron Paramagnetic Resonance (EPR), optical emission and optical absorption. It was also found that the specific type of silver spices observed depends on the structure of the SiO2 matrix and on the annealing temperatures. It was found that samples prepared from precursor solutions with a low H2O/TEOS ratio have a more open structure, and therefore silver diffuses faster and forms agglomerates at lower temperatures. Samples prepared from solutions with larger H2O/TEOS ratios have a more dense structure, which allows the formation of atomic or molecular spices in addition to silver particles. A systematic study of this system was carried out using EPR on samples prepared from solutions having different H2O/TEOS molar ratios, various Ag concentrations and subjected to different thermal treatments.  相似文献   

8.
In the problem of the production silver nanoparticles, mass spectrometry allows one to identify nanoclusters as nuclei or intermediates in the synthesis of nanoparticles and to understand the mechanisms of their formation. Using low-temperature secondary emission mass spectrometry, we determined the cluster composition of a system formed in the microwave treatment of a solution of AgNO3 in ethylene glycol (M). Along with silver ion–ethylene glycol associates М m ? Ag+ (m = 1–5) and small silver clusters AgM n + (n = 1–9), unusual silver clusters with one hydrogen atom [Ag n H]+ (n = 2, 4) were observed. Possible pathways for the formation of silver nanoparticles taking into account hydrogen-containing cluster intermediates are discussed.  相似文献   

9.
The influence of the low-temperature treatment of Ag hydrosol on the properties of silver particles was studied by electron absorption spectroscopy over the temperature range 77–230 K. Low-temperature treatment caused the aggregation of particles because of an increase in the number of defects on the surface of Ag observed as an increase in the damping coefficient of electron plasma oscillations. These processes depended on the temperature and initial concentration of disperse silver. Defect formation is explained taking into account the tunnel mechanism of the interaction of low-atomic mobile H+(H2O) n and OH(H2O) n clusters with the surface of silver particles at low temperatures. Original Russian Text ? E.A. Kononova, I.I. Mikhalenko, V.D. Yagodovskii, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 4, pp. 774–779.  相似文献   

10.
Sulfamic acid has wide application in industry and has been suggested to act as an effective nucleation agent for the formation of aerosols and cloud particles. From the point of view of the role that sulfamic acid may play in aerosol formation, the study of its homoaggregation is important. Gas phase clustering study was performed for sulfamic acid H3N·SO3, (ASA), from water and methanol–water solutions, by help of a TOF‐Q spectrometer equipped with electrospray ionization source, in the negative‐ion mode. The structure and stability of the (H3N·SO3)n and [(H3N·SO3)n‐H]? (n = 1–6) were studied using DFT/B3LYP/aug‐cc‐pVDZ method. The ESI MS study evidenced that both singly and doubly charged clusters are formed when the acids are electrosprayed from water solutions; they may be described as [(H3N·SO3)n‐zH]z? where z = 1 or 2. The largest identified clusters are built of 20 monomers. The theoretical studies showed that formation of higher order (ASA)n aggregates in the gas phase is energetically profitable. In contrast with the gas phase, aqueous solution does not favor the formation of (ASA)n aggregates. The study led to the conclusion that the ASA clusters are formed in the gas phase under the experimental conditions of the mass spectrometer. A hypothetical mechanism concerning the formation of the doubly negatively charged anionic aggregates is discussed. The obtained data suggest that small (NH3·SO3)n aggregates may also contribute to formation of aerosols in heavily polluted atmospheres with relatively large NH3 concentration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Metal clusters, such as iron–sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins. Herein we report the formation and crystal structure of a planar square tetranuclear silver cluster when silver ions were mixed with human copper chaperone Atox1. Quantum chemical studies reveal that two Ag 5s1 electrons in the tetranuclear silver cluster fully occupy the one bonding molecular orbital, with the assumption that this Ag4 cluster is Ag42+, leading to extensive electron delocalization over the planar square and significant stabilization. This bonding pattern of the tetranuclear silver cluster represents an aromatic all-metal structure that follows a 4n + 2 electron counting rule (n = 0). This is the first time an all-metal aromatic silver cluster was observed in a protein.

Metal clusters, such as iron–sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins.  相似文献   

12.
The liquid SIMS mass spectra of silver acetate dissolved in a glycerol matrix is discussed, with emphasis on the formation of a ‘silver mirror’ on the surface of the glycerol droplet owing to reduction of the silver acetate. Silver clusters containing up to three silver atoms have been observed from this mirrored surface; Ag3+ cluster ions are not observed in the spectrum when conditions are such that the mirror is not formed. For example, use of a slightly oxidizing matrix (o-nitrophenyl octyl ether or m-nitrobenzylalcohol) prevents formation of the ‘mirror’; only Ag+ is sputtered from this surface.  相似文献   

13.
In the reduction of Ag+ ions by hydrogen in aqueous polyphosphate-containing solutions, the formation of metal nanoparticles is preceded by the emergence of clusters comprising a few silver atoms and ions. In the process of cluster aggregation, their nuclearity increases and quasi-metallic particles followed by metal nanoparticles are formed. The efficiency of nanoparticle formation rises with the increasing concentration of polymer stabilizer. The mechanism of the formation of hydrosol is discussed.  相似文献   

14.
It was found that long-lived positively charged and neutral silver clusters were formed by the radiation-chemical reduction of Ag+ ions in aqueous solutions containing sodium polyphosphate. The nuclearity of the clusters increased with absorbed dose; then, quasi-metal particles were formed. The process culminated in the formation of silver nanoparticles.Translated from Khimiya Vysokikh Energii, Vol. 39, No. 2, 2005, pp. 83–87.Original Russian Text Copyright © 2005 by Ershov, Abkhalimov, Sukhov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

15.
Density functional theory and Car–Parrinello molecular dynamics simulations have been carried out for model aldol reactions involving aggregates of lithium enolates derived from acetaldehyde and acetone. Formaldehyde and acetone have been used as electrophiles. It is found that the geometries of the enolate aggregates are in general determined by the most favorable arrangements of the point charges within the respective LinOn clusters. The reactivity of the enolates follows the sequence monomer?dimer>tetramer. In lithium aggregates, the initially formed aldol adducts must rearrange to form more stable structures in which the enolate and alkoxide oxygen atoms are within the respective LinOn clusters. Positive cooperative effects, similar to allosteric effects found in several proteins, are found for the successive aldol reactions in aggregates. The corresponding transition structures show in general sofa geometries.  相似文献   

16.
Nanostructured Ag films composed of nanoparticles and nanorods can be formed by the ultrasonication of ethanol solutions containing Ag2O particles. The present work examined the formation process of these films from ethanol solutions by two different agitation methods, including ultrasonication and mechanical stirring. The mass-transfer process from Ag2O particles to ethanol solvent is accelerated by the mechanical effects of ultrasound. Ag+ ions and intermediately reduced Ag clusters were released into the ethanol. These Ag+ ions and Ag clusters provide absorption bands at 210, 275 and 300 nm in UV-vis spectra. These bands were assigned to the absorption of Ag+, Ag 4 2+ and Agn (n?≈?3). The Agn clusters that readily grow to become Ag nanoparticles were formed due to the surface reaction of Ag2O particles with ethanol under ultrasonication. The reactions of Ag+ ions in ethanol to form Ag nanomaterials (through the formation of Ag 4 2+ clusters) were also accelerated by ultrasonication.  相似文献   

17.
Thesensitivityofsilverhalideemulsionscouldbeimprovedgreatlyafterbeingchemicallysensitized.Thematterwhichplaysanimportantroleisthesocalledsensitizationcentersformedduringthechemicalsensitizationprocess.Thestudyontheformatin,natureandfunctionofthesecent…  相似文献   

18.
Using the molecular dynamics method, the joint absorption of oxygen and nitrate ions by water clusters is studied in terms of the polarizable model of flexible molecules. Significant fluctuations are observed in the number of hydrogen bonds in the clusters during the addition of NO3 ions to water-oxygen aggregates. Dielectric permittivity noticeably changes upon the addition of O2 molecules to water clusters and nitrate ions to oxygen-containing water clusters. After the absorption of oxygen molecules and nitrate ions, water clusters markedly lose the ability to IR absorption. The Raman spectrum of a medium formed from disperse aqueous system, oxygen, and nitrate ions displays a greater number of bands than the spectrum of a system of pure water clusters.  相似文献   

19.
The annealing behaviour of silica powders added with silver, prepared by the sol-gel method, was studied using X-ray diffraction. Partial crystallization of amorphous SiO2 samples as low as 600°C has been observed. For that, silver needed to be added to the precursor solution in such a way that it formed aggregates. Silica xerogel samples were prepared using a molar ratio ethanol/H2O/TEOS of 4:11.6:1 and loaded with silver in three different ways: in the form of silver nitrate, silver chloride, or chemically synthesised silver fine particles. The microstructure of the silica xerogel powders was studied as a function of annealing temperature. Attention was paid to the evolution of the glass matrix as well as the silver aggregates in the SiO2 matrix. Partial crystallization of the glass matrix was achieved at temperatures much lower than those specified by the phase diagram, independently of preparation method of the silver aggregates.  相似文献   

20.
Silver cationic clusters formed in γ-irradiated AgCs-rho zeolites in hydrated and dehydrated forms have been studied by electron spin resonance (ESR) spectroscopy and diffuse reflectance spectrophotometry. It was found that tetrameric silver clusters, Ag 4 3+ in dehydrated zeolites and Ag 4 2+ in hydrated samples, are stabilized at room temperature. Tetrameric silver is trapped inside octagonal prism of zeolite framework and does not show any noticeable decay as far as samples are evacuated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号