首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe clusters of 105±2 atoms/cluster were mass selectively deposited onto Cu(111) at cryogenic temperatures. XMCD was used to measure temperature and direction dependent magnetization curves. The clusters are superparamagnetic at the lowest temperature measured (10 K). Their magnetization curves are consistent with magnetic moments of ≈2.5μB per atom which are thus enhanced over the bulk values. Within experimental accuracy, the clusters do not present magnetocrystalline anisotropy in the temperature range of 10 K to 60 K.  相似文献   

2.
Easy and hard magnetization curves of YCo4B compound have been measured in the temperature range from 1.5 to 300 K. It was found that the uniaxial magnetic anisotropy field decreases with decreasing temperature, and the magnetic anisotropy changes from the easy c-axis to the easy cone at approximately 150 K. The easy and hard magnetization curves did not cross up to 6 T. High field susceptibility of the compound for magnetic field parallel to the alignment direction seems different from that for a field perpendicular to the alignment direction. A jump was observed along the easy magnetization curve at 1.5 and 77 K. The critical field of the jump is about 1.5 T at 1.5 K and 1.2 T at 77 K. The jump was shown to be reversible at 1.5 K by down hill measurement.  相似文献   

3.
Measurements of magnetization, electrical resistivity, thermal expansion and differential thermal change were made on amorphous Fe100-xBx (9 ≦ X ≦ 21) alloys prepared by rapid quenching from the liquid state.With decreasing boron content in the alloys, the Curie temperature falls remarkably, while the magnetic moment increases sluggishly. The thermal expansion curves exhibit the invar characteristics below the Curie temperature due to a large positive spontaneous volume magnetostriction, and the reduced magnetization curves decrease much more rapidly with increasing temperature than those of other ferromagnetic amorphous alloys.  相似文献   

4.
Nano-crystalline MnFe2−xAgxO4 (x = 0, 0.1, 0.2, 0.3 and 0.6) samples with average grain size of 4–7 nm were synthesized by a simple method based on decomposition of metal nitrates in presence of citric acid. The samples were characterized by different structural, magnetic and electrical measurements. Rietveld refinement of X-ray diffraction data confirmed cubic spinel structure of the samples. Results show that Ag doping decreases the crystallite size, magnetization and coercivity of nanoparticles. By increasing the Ag content in the samples the saturation magnetization shows interesting temperature dependent behavior. It was realized that magnetization of smaller particles show higher sensitivity to temperature variations than larger particles. DC electrical resistivity measurements in the temperature range of 300–650 K show that the resistivity first increases and then decreases by increasing the Ag content in the samples. Curie temperature (Tc) and polaron activation energy in ferromagnetic and paramagnetic regions were estimated by using resistivity curves.  相似文献   

5.
Magnetic properties of p-doped GaMnN diluted magnetic semiconductors, having both randomly distributed Mn ions and MnxNy clusters, are presented under the theory based on the hole-mediated ferromagnetism. The critical temperature of the second order phase transition between ferromagnetic and paramagnetic phases and the magnetization as a function of temperature are obtained from the free energy calculation. The Curie temperature of the p-doped GaMnN containing clusters depends not on the type of clusters but on the composition rate of clusters. The behavior of the spontaneous magnetization as a function of temperature is strongly affected by carrier concentration. The p-doped GaMnN diluted magnetic semiconductors containing clusters have room temperature ferromagnetism regardless of the magnetic type of clusters, as long as hole-mediated spin-spin interactions occur in them.  相似文献   

6.
The cross-breeding problem of the temperature dependence of the antiferromagnetic susceptibility of ferrihydrite nanoparticles is considered. Iron ions Fe3+ in ferrihydrite are ordered antiferromagnetically; however, the existence of defects on the surface and in the bulk of nanoparticles induces a noncompensated magnetic moment that leads to a typical superparamagnetic behavior of ensemble of the nanoparticles with a characteristic blocking temperature. In an unblocked state, magnetization curves of such objects are described as a superposition of the Langevin function and the linear-in-field contribution of the antiferromagnetic “core” of the nanoparticles. According to many studies of the magnetization curves performed on ferrihydrite (and related ferritin) nanoparticles in fields to 60 kOe, dependence χAF(T) decreases as temperature increases, which was related before to the superantiferromagnetism effect. As the magnetic field range increases to 250 kOe, the values of χAF obtained from an analysis of the magnetization curves become lower in magnitude; however, the character of the temperature evolution of χAF is changed: now, dependence χAF(T) is an increasing function. The latter is typical for a system of AF particles with random orientation of the crystallographic axes. To correctly determine the antiferromagnetic susceptibility of AF nanoparticles (at least, ferrihydrite) and to search for effects related to the superantiferromagnetism effect, it is necessary to use in experiments the range of magnetic field significantly higher than that the standard value 60 kOe used in most experiments. The study of the temperature evolution of the magnetization curves shows that the observed crossover is due to the existence of small magnetic moments in the samples.  相似文献   

7.
The magnetic and magnetooptical properties of 50-to 200-nm-thick Ni films, both as-deposited and annealed at Tann = 300, 400, or 500°C, were studied. Volume and near-surface hysteresis loops were measured with a vibrating-sample magnetometer (VSM) and with the use of the transverse Kerr effect (TKE). The annealing temperature was found to exert a strong effect on the magnetic characteristics of the samples under study. It was established, in particular, that the coercivity H C of Ni films increases and the remanent magnetization decreases with increasing annealing temperature. The observed dependences of the magnetic properties of the films on film thickness and annealing temperature are explained as being due to microstructural characteristics of the samples. It was found that, while TKE spectra obtained in the incident-photon energy region from 1.5 to 6 eV have the same shape for all the Ni films studied, the magnitude of the TKE decreases with increasing Tann. This experimental observation is accounted for by the decreased saturation magnetization of the annealed films.  相似文献   

8.
A simple classical model [5] that is based on a blocking of magnetic clusters in a uniaxial anisotropy field explains characteristic properties of magnetization processes of Cu(5–15 at.%) Mn as transition states between the “zero point magnetization” M0 = M(T → OK) and the thermal equilibrium magnetization M = M(t → ∞, T). Further it shows two facts the experimental confirmations of which we report in this paper: (a) a magnetization decrease with increasing temperature in high fields and (b) a superposition rule for the magnetization processes in small fields and at low temperatures.  相似文献   

9.
The temperature and field dependent magnetic properties of melt-spun amorphous Fe89−xyZr11Bx(Co,Mn)y (x=5, 10 and 0≤y≤10) alloys in the temperature range 5-1200 K are reported. The Curie temperature and saturation magnetization at room temperature increase (decrease) almost linearly with Co (Mn) addition. With increasing Co concentration, the room temperature coercivity increases at the rate of 2.26 (0.28) A/m per at% for the x=5 (10) samples. The high-field magnetic susceptibility and local magnetic anisotropy decrease (increases) rapidly with increasing Co (Mn) concentration. The thermomagnetic curves show a marked increase in magnetization above 850 K corresponding to the crystallization of α-FeCo (α-Fe) phase in samples containing Co (Mn). The Curie temperature of the crystalline phase increases (remains same) with increasing Co (Mn) concentration with the formation of α-FeCo (α-Fe). Addition of Co up to 10 at% in Fe-Zr-B improves the room temperature saturation magnetization from 0.56 to 1.2 T, and Curie temperature from 315 to 476 K. Also, the coercivity increases with Co addition from 1.27 to 23.88 A/m for x=5 and from 7.64 to 10.35 A/m for x=10 alloy. The non-collinear spin structures that characterize Fe rich Fe-Zr-B amorphous alloys have been used to describe the observed results.  相似文献   

10.
Hyperfine interactions and bulk magnetic properties have been investigated in the system Zr(Fe1?xAlx)2 as a function of concentration, temperature and stoichiometry. The similarity of both the concentration and the temperature dependence of the magnetization is pointed out. The influence of clusters, short range order and magnetocrystalline anisotropy on the magnetization process will be discussed. From the temperature dependence of the hyperfine field and the magnetization spin wave contributions are calculated. The applicability of the model of itinerant electron magnetism will be compared with the formation of local moments.  相似文献   

11.
The magnetization of thin films is calculated for low temperatures, taking into account the exchange interaction, an external magnetic field, and the dipole interaction. The calculations are performed within a quantized phenomenological spin wave theory. For thin enough films, within the temperature range considered, only the lowest spin wave band contributes to the decrease of the magnetization. The influence of the dipole interaction is as follows: The magnetization decreases less rapidly with growing temperature than predicted by calculations within the Heisenberg model; the decrease depends considerably on the angle between the magnetization and the film plane; even atT=0K there is a small increase of the magnetization with growing external field.  相似文献   

12.
The magnetization curves of randomly oriented nanoparticles with combined symmetry of magnetic anisotropy were studied. The composite mode of the Stoner–Wolfarth model has been used. In terms of this model each nanoparticle is characterized by random cubic crystalline magnetic anisotropy and by random uniaxial magnetic anisotropy. The series of simulated magnetization curves have been obtained. Each curve corresponds to different contributions of cubic and uniaxial magnetic anisotropy energy to the full energy of an individual nanoparticle ku. Within this series we discuss the values of remnant magnetization, coercive force, both initial and maximal susceptibilities as the function of ku. It is found that the magnetic properties are not monotonous functions of ku. We discuss the possibility of comparing the calculated magnetization curves with the experimental curves in order to obtain new information on the magnetic constant.  相似文献   

13.
Theoretical studies of the temperature (T) dependence of magnetization of Gd13 clusters have been carried out within a classical Heisenberg model using Monte-Carlo simulations. It is shown that for a broad range of values of , defined as the ratio between competing ferro and anti-ferro magnetic couplings, the cluster magnetization increases with T in the low T region, as seen in experiment. The clusters are also shown to exhibit a wide distribution of moments at a given T, which broadens significantly with increasing T. It is suggested that this may affect the observed magnetic behavior of magnetic clusters in Stern-Gerlach experiments. Received 29 May 1999 and Received in final form 5 September 1999  相似文献   

14.
The magnetic properties of a substituted Nd0.95Dy0.05Fe3(BO3)4 ferroborate single crystal with competing Nd-Fe and Dy-Fe exchange interactions are studied experimentally and theoretically. A spontaneous spin-reorientation transition is detected near T = 4.3 K, and anomalies are observed in the low-temperature magnetization curves along trigonal axis c and in basal plane ab. The measured properties and the detected effects are interpreted in terms of a general theoretical approach, which is based on the molecular field approximation and crystal field calculations for a rare-earth ion. The experimental temperature dependences of the initial magnetic susceptibility in the range 2–300 K, the anomalies in the magnetization curves for Bc and Bc in fields up to 1.5 T, and the field and temperature dependences of magnetization in fields up to 9 T are described. The effect of small substitution in the rare-earth subsystem on the magnetic properties is analyzed. The crystal field parameters and the parameters of the R-Fe and Fe-Fe exchange interactions are determined from the experimental data.  相似文献   

15.
Mössbauer and magnetization measurements have been used to observe the magnetic ordering of interstitial iron atoms in the Fe1+xSb phase in seven Fe:FeSb alloys. Short range magnetic ordering of the interstitials occurs only at temperatures well below the FeSb lattice Néel temperature. Magnetization measurements show that the interstitials form magnetic clusters which freeze in typical mictomagnetic fashion around 30 K. Field cooled alloys show an irreversible magnetization better described as classical superparamagnetism. Variations in the cluster freezing temperature with applied field are observed.  相似文献   

16.
Polarized neutron scattering techniques have been used to study the spatial distribution of the magnetization induced in a single crystal of LaSn3 by a magnetic field of 42.5 kG at 100 K. We find that the magnetic form factor decreases very rapidly with increasing scattering angle, and bears no resemblance to the spin or orbital free-atom magnetic form factor. The experimental results are in reasonable agreement with band theoretical calculations of the spin magnetic form factor of LaSn3. We conclude that (a) the spin part is the dominant contribution to the bulk susceptibility of LaSn3 and (b) there is a substantial amount of Sn-5p electronic character in the wavefunctions near the Fermi level.  相似文献   

17.
The magnetic and transport properties of La1?x Mn1+x O3 manganites with excess manganese are studied. It is shown that magnetic and charge ordering heavily depends on the superstoichiometric manganese content, magnetic field, and pressure. The magnetoresistive effect (MRE) is enhanced as the manganese concentration increases. In addition to the paramagnet-ferromagnet transition, the temperature dependences of the magnetization exhibit anomalies at low temperatures in samples with x=0.1–0.4. The magnetization decreases at T<45 K in fields H<0.2 kOe and increases as H changes from 0.2 to 10 kOe. An analysis shows that the features observed at low temperatures are most probably related to the transition from the ferromagnetic state to the canted spin structure in clusters of mixed-valence manganese ions. The temperature dependences of the magnetization and resistivity remain unchanged as the pressure increases. It is demonstrated that the Curie and metal-dielectric transition temperatures shift to higher values as the manganese concentration increases under pressure. The temperature of the MRE peak increases under pressure, while the MRE decreases.  相似文献   

18.
林虹  钟文定 《物理学报》1985,34(11):1385-1395
本文研究了Sm2(FeNiCoM)17合金(M为非磁性组元)的磁性。样品由六角结构无序型的2∶17主相及少量FeNi合金杂相组成。在六角结构的e轴方向(易磁化方向)观察到下述异常现象:低温(273K以下)时的磁化及反磁化曲线发生明显的跃变,跃变时相应的磁场Hr随温度下降而增大;磁滞迴线是蜂腰型的,温度愈低蜂腰愈明显;升温时磁化强度随温度变化(1.5K至居里点TC)的曲线上出现极大值,其相应的温度Tt随磁场增大而降低;降温时观察到了热磁滞后现象。但在基面(难磁化方向)上及Co含量增多(>18at%)时,样品却表现了正常的铁磁行为。本文提出用磁矩非共线结构排列的自旋再取向相变来解释上述异常现象,并给出自旋倒向所需越过的能垒高度U=9.2×10-15erg,用设想磁结构的模型得到的磁化强度的计算值与实验值也符合得较好。 关键词:  相似文献   

19.
We have synthesized bulk RuSr2RECu2O8 (RE=Eu, Gd and Ho) compounds using the ammonium nitrate melt technique. The phase purity of the samples decreases as the ionic radii of the RE element decreases. For RE=Ho, magnetic Sr2HoRuO6 and CuO were formed instead of the 1212 phase. The magnetization vs. temperature curves of the samples are similar to those of the samples prepared using the solid-state reaction method. The magnetic anomalies observed in M-T curves are discussed.  相似文献   

20.
An analysis is given of the conditions for ferromagnetic phase transitions in an idealised semiconductor model containing magnetic ions. The system is described by a constant interaction — 2J/N between the magnetic ions (Spin I) and the electrons, by the energy gapΔ between two infinitely narrow bands and by the concentrationc of the magnetic ions. We find a great variety of ferromagnetic behavior. In particular there exists the possibility for the magnetization to disappear with a first or second order transition as the temperature decreases or increases. Some magnetization curves are evaluated numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号