首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal and magnetic structures of Fe1.087Te have been studied by neutron powder diffraction in the temperature range from 1.7 to 80 K at pressures of  ≈0.4 and ≈1.2 GPa. No symmetry change of the tetragonal paramagnetic ambient pressure phase (space group P4/nmm) was observed for temperatures above 60 K and pressures up to  ≈1.2 GPa. A novel pressure-induced phase of Fe1.087Te having orthorhombic symmetry (space group Pmmn) and incommensurate antiferromagneticbicollinear order was observed in the temperature range from 50 to 60 K at  ≈1.2 GPa. The known monoclinic ambient pressure phase of Fe1.087Te (space group P2 1/n) with commensurate antiferromagnetic order was found to be stable up to at least  ≈1.2 GPa at low temperature.  相似文献   

2.
The crystalline structure of a molecular crystal of chlorpropamide C10H13ClN2O3S is studied by X-ray diffraction at high pressures of up to 4.2 GPa at room temperature. Under normal conditions the structure of chlorpropamide has orthorhombic symmetry with the space group P212121. At high pressures P > 1.2 GPa, a polymorphic phase transition into the monoclinic phase with the space group P21 is observed. The baric dependences of the lattice parameters and unit-cell volumes are obtained for both phases of chlorpropamide.  相似文献   

3.
Fe1.087Te exhibits three phases in the pressure range from ambient to 16.6?GPa and becomes amorphous at higher pressures. All three phases have tetragonal symmetry. The low pressure T-phase is stable in the pressure range 0≤P<4.1?GPa and is found to be relatively soft having zero pressure bulk modulus B 0=36(1)?GPa. The intermediate cT-phase is less compressible with B 0=88(5)?GPa and stable in the pressure range 4.1≤P<10?GPa while a more compressible phase was observed between 10 and 16.6?GPa.  相似文献   

4.
The crystal and local atomic structure of monoclinic ReO2 (α‐ReO2) under hydrostatic pressure up to 1.2 GPa was investigated for the first time using both X‐ray absorption spectroscopy and high‐resolution synchrotron X‐ray powder diffraction and a home‐built B4C anvil pressure cell developed for this purpose. Extended X‐ray absorption fine‐structure (EXAFS) data analysis at pressures from ambient up to 1.2 GPa indicates that there are two distinct Re—Re distances and a distorted ReO6 octahedron in the α‐ReO2 structure. X‐ray diffraction analysis at ambient pressure revealed an unambiguous solution for the crystal structure of the α‐phase, demonstrating a modulation of the Re—Re distances. The relatively small portion of the diffraction pattern accessed in the pressure‐dependent measurements does not allow for a detailed study of the crystal structure of α‐ReO2 under pressure. Nonetheless, a shift and reduction in the (011) Bragg peak intensity between 0.4 and 1.2 GPa is observed, with correlation to a decrease in Re—Re distance modulation, as confirmed by EXAFS analysis in the same pressure range. This behavior reveals that α‐ReO2 is a possible inner pressure gauge for future experiments up to 1.2 GPa.  相似文献   

5.
The vibrational dynamics of elemental solids that form incommensurate host-guest structures are of fundamental interest. High-pressure Raman scattering has been used to examine the vibrational spectrum of the group-V element Sb up to 33 GPa. A1g and Eg phonons of the ambient pressure rhombohedral A7 phase display a marked decrease with pressure, i.e., prior to the transition to the tetragonal host-guest Sb-II phase at 8.6 GPa, via the monoclinic host-guest Sb-IV phase. The Raman spectrum of the incommensurate host-guest Sb-II phase, has five bands between 80 cm−1 and 200 cm−1 that increase with pressure. For the bcc structure stable above 28 GPa, we observe one weak disorder-induced band that increases with pressure.  相似文献   

6.
The phase diagram of zirconium metal has been studied using synchrotron X-ray diffraction and time-of-flight neutron scattering at temperatures and pressures up to 1273 K and 17 GPa. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 473 K/GPa, and the extrapolated transition pressure at ambient temperature is located at 3.4 GPa. For the ω-β transition, the phase boundary has a negative dT/dP slope of 15.5 K/GPa between 6.4 and 15.3 GPa, which is substantially smaller than a previously reported value of −39±5 K/GPa in the pressure range of 32-35 GPa. This difference indicates a significant curvature of the phase boundary between 15.3 and 35 GPa. The α-ω-β triple point was estimated to be at 4.9 GPa and 953 K, which is comparable to previous results obtained from a differential thermal analysis. Except for the three known crystalline forms, the β phase of zirconium metal was found to possess an extraordinary glass forming ability at pressures between 6.4 and 8.6 GPa. This transformation leads to a limited stability field for the β phase in the pressure range of 6-16 GPa and to complications of high-temperature portion of phase diagram for zirconium metal.  相似文献   

7.
The Raman spectra of Cs2NH4WO3F3 elpasolite crystals are studied in the temperature range 93–373 K at pressures of up to 6.3 GPa. No indication of a phase transition is revealed from the Raman spectra as the temperature decreases to 93 K. An analysis of the Raman spectra measured under pressure demonstrates that the Cs2NH4WO3F3 elpasolite crystals undergo a phase transition at a pressure of 2.58 GPa. Judging from the behavior of the pressure dependences of the vibrational frequencies, the revealed phase transition is associated with the lowering of the symmetry of the WO3F3 octahedra.  相似文献   

8.
The crystal structure of antiferroelectric Pb2MgWO6 has been studied using neutron diffraction at high pressures to 5.4 GPa at room temperature and energy-dispersive X-ray diffraction at high pressures to 4 GPa in the temperature range 300–400 K. At normal conditions, in Pb2MgWO6, there is an antiferroelectric phase with the crystal structure described by the orthorhombic symmetry with space group Pnma. At temperature T = 313 K and normal pressure or at room temperature and pressure P ~ 0.9 GPa, the crystal under-goes a structural phase transition to the cubic phase with space group $Fm\bar 3m$ (paraelectric phase). The temperature and pressure dependences of the lattice parameters, unit cell volume, and interatomic bond lengths have been obtained, and the thermal expansion coefficients and the bulk moduli have been calculated for the antiferroelectric and paraelectric phases of Pb2MgWO6.  相似文献   

9.
For the first time, Raman spectroscopy of α and γ polymorphs of AlH3 has been performed in the pressure range from ambient up to 16.9 and 32.7 GPa, respectively using the diamond anvil cell (DAC) technique. An analysis of pressure response wavenumbers (ν) for α‐AlH3 showed a change of dνi/dP at a pressure of about 8 GPa and may indicate a monoclinic distortion from the initially hexagonal α‐AlH3. The distortion is stable at least up to 16.9 GPa. The γ form exhibited more complex behavior transforming to the α form at a pressure of about 12 GPa. The structural phase transition was shown to be an irreversible and kinetically slow process that required at least 5 h to complete. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

11.
Electronic structure calculations on the low-dimensional spin?1/2 compound TiOCl were performed at several pressures in the orthorhombic phase, finding that the structure is quasi-one-dimensional. The Ti3+ (d1) ions have one t2g orbital occupied (dyz) with a large hopping integral along the b-direction of the crystal. The most important magnetic coupling is Ti–Ti along the b-axis. The transition temperature (Tc) has a linear evolution with pressure, and at about to 10 GPa this Tc is close to room temperature, leading to a room temperature spin-Peierls insulator–insulator transition, with an important reduction of the charge gap in agreement with the experiment. On the high-pressure monoclinic phase, TiOCl presents two possible dimerized structures with a long or short dimerization. Long dimerized state occurs above 15 GPa, and below this pressure the short dimerized structure is the more stable phase.  相似文献   

12.
The crystal and magnetic structures and the vibrational spectra of Pr0.7Sr0.3MnO3 manganite are studied within the pressure range up to 25 GPa by methods of X-ray diffraction and Raman spectroscopy. Neutron diffraction studies have been performed at pressures up to 4.5 GPa. The magnetic phase transition from the ferromagnetic phase (T C = 273 K) to the A-type antiferromagnetic phase (T N = 153 K) is found at P ≈ 2 GPa. This transition is characterized by a broad pressure range corresponding to the phase separation. The Raman spectra of Pr0.7Sr0.3MnO3 measured under high pressures significantly differ from the corresponding spectra of the isostructural doped A1 ? x A′ x MnO3 manganites, (where A is a rare-earth ion and A′ is an alkaline-earth ion) with the smaller average ionic radius 〈r A〉 of A and A′ cations. Namely, the former spectra do not include clearly pronounced stretching phonon modes. At P ~ 7 GPa, there appears the structural phase transition from the orthorhombic phase with the Pnma space group to the orthorhombic high-pressure phase with the Imma symmetry. In the vicinity of the phase transition, anomalies in the pressure dependences of the lattice parameters, unit cell volume, and phonon frequencies corresponding to the characteristic lattice vibration modes are observed.  相似文献   

13.
We present a structural study of single crystalline quartz-like α-GeO2 compressed to pressures up to 12 GPa and subsequently quenched to ambient conditions. The transition to a new crystalline phase with a distorted rutile structure, occurring in the pressure interval 8 to 12 GPa, was established. The structure of the new phase was identified from X-ray and electron diffraction data as P21/c monoclinic. Electron transmission and scanning microscopy provide direct evidence of the martensitic (or displacive) nature of the transition, indicating, in particular, the lamellar morphology and crystallographic orientation relation between the initial α-quartz and final new monoclinic phases. Upon heating, the new monoclinic phase transforms to the rutile-type structure with a similar (and similarly oriented) oxygen structure motif. Finally, we discuss the difference in high-pressure behavior of single-crystalline and polycrystalline samples transforming to the new crystalline and amorphous phases, respectively.  相似文献   

14.
The crystal structure of sodium niobate (NaNbO3) has been investigated by energy-dispersive X-ray diffraction at high pressures (up to 4.3 GPa) in the temperature range 300–1050 K. At normal conditions, NaNbO3 has an orthorhombic structure with Pbcm symmetry (antiferroelectric P phase). Upon heating, sodium niobate undergoes a series of consecutive transitions between structural modulated phases P-R-S-T(1)-T(2)-U; these transitions manifest themselves as anomalies in the temperature dependences of the positions and widths of diffraction peaks. Application of high pressure leads to a decrease in the temperatures of the structural transitions to the R, S, T(1), T(2), and U phases with different baric coefficients. A phase diagram for sodium niobate has been build in the pressure range 0–4.3 GPa and the temperature range 300–1050 K. The dependences of the unit-cell parameters and volume on pressure and temperature have been obtained. The bulk modulus and the volume coefficients of thermal expansion have been calculated for different structural modulated phases of sodium niobate. A phase transition (presumably, from the antiferroelectric orthorhombic P phase to the ferroelectric rhombohedral N phase) has been observed at high pressure (P = 1.6 GPa) and room temperature.  相似文献   

15.
Measurements of the electrical conductivity were performed in KHSO4 at pressures between 0.5 and 2.5 GPa and in the temperature range 120-350 °C by the use of the impedance spectroscopy. The temperatures of the α-β phase transition (TTr) and of the melting (Tm), determined from the Arrhenius plots ln(σT) vs. 1/T, increase with pressure up to 1.5 GPa having dT/dP∼+45 K/GPa. Above the pressure 1.5 GPa, the pressure dependencies of TTr and Tm are negative dT/dP∼−45 K/GPa. At pressures above 0.5 GPa, the reversible decomposition of KHSO4 into K3H(SO4)2+H2SO4 (and probably into K5H3(SO4)4+H2SO4) affects the electrical conductivity of KHSO4, with the typical values of the protonic electrical conductivity, c. 10−1 S/cm at 2.5 GPa.  相似文献   

16.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

17.
Summary Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa,i.e. in regions of pressure-temperature (P-T) space where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions ofP-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures. We present57Fe and129I M?ssbauer isotope studies covering the range 300–4 K to sub-megabar pressures in compounds such as Sr2FeO4, LaFeO3 and FeI2, representative of a broad class of 3d transition metal compounds. At ambient pressure the electronic structure of the transition metal atom in these antiferromagnetic insulators extends from 3d 4 to 3d 6 and has a distinct influence on the pressure evolution of their magnetic properties. M?ssbauer studies of these compounds are considered in conjunction with available structural and electrical transport data at pressure. Paper presented at ICAME-95, Rimini, 10–16 September 1995.  相似文献   

18.
The effect of pressure on the conduction of the NbS3 quasi-one-dimensional conductor is studied. A pressure-induced insulator-metal transition is observed. The transition is accompanied by an increase in conductivity by six orders of magnitude at room temperature. Under pressures of 3–4 GPa, an additional phase transition appears in the temperature dependences of resistance. This transition manifests itself in an increase in the local conduction activation energy. The quantity dln(R)/d(1/T) reaches its maximum under pressures of 4–5 GPa, and the temperature position of the maximum of dln(R)/d(1/T) depends on the pressure as T* ≈ 7.5P + 202 K.  相似文献   

19.
The pressure dependences of the thermopower and electrical resistance of the Pr0.8Na0.2MnO3 manganite are measured in the pressure range 0–20 GPa at room temperature. The thermopower varies nonmonotonically with pressure: the magnitude of the thermopower increases in the range of comparatively low pressures P < 5 GPa and decreases at higher pressures, whereas the electrical resistance decreases throughout the pressure range studied. The pressure at which the pressure coefficient dS/dP reverses sign is close to the value at which the Pr0.8Na0.2MnO3 manganite undergoes a magnetic phase transition in the low-temperature range. The correlation between the specific features in the behavior of the thermopower with variations in pressure and the transformations of the magnetic and crystal structures of Pr0.8Na0.2MnO3 at high pressures is discussed.  相似文献   

20.
Non-Fermi-liquid behavior and close proximity to a quantum critical point in the 5d transition metal iridate SrIrO3 at ambient pressure motivate our search for possible anomalous behavior in its transport properties under pressure. The electrical resistivity in the ab-plane of a single crystal of SrIrO3 has been measured over the temperature range 1.35–285 K at both ambient and 9.1 kbar hydrostatic pressure. The resistivity decreases slightly over the entire temperature range, but no superconducting transition or changes in the non-Fermi-liquid behavior are observed under pressure. It is estimated that significantly higher pressures are likely required before sizable changes in the properties of SrIrO3 will occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号