首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium membranes have been used for decades for the separation of hydrogen from other gasses. In this letter the use of thin palladium leaves to act as sources of atomic hydrogen for silicon samples is explored. It has been assumed in the past that although hydrogen diffuses through palladium in atomic form, the atoms recombine to form molecular hydrogen at the surface. In this letter it is shown that hydrogen supplied to one surface of a palladium leaf can result in atomic hydrogen being released from the opposite surface at low pressure. This is demonstrated through the use of a palladium leaf in a direct plasma system which allows for atomic hydrogen to be supplied to a sample while avoiding exposure to UV radiation from the plasma and high energy charged particles. This method is shown to provide significant atomic hydrogen to silicon samples and improve passivation of silicon surfaces. Method of Shielded Hydrogen Passivation: Schematic of direct plasma chamber with a shield inserted between the plasma and the silicon sample.  相似文献   

2.
Preliminary results on the chemical attack of several carbon materials by hydrogen plasma are presented and compared with the literature data on the reaction of hydrogen atoms with carbon in an afterglow. The chemical erosion of silicon carbide and of pyrolytical graphite should not be dangerous for the ignition of fusion assuming that the reaction probability of hydrogen atoms with the particular material would not be increased due to radiation damage of the surface.  相似文献   

3.
Thin silicon films were synthesized by the gas-jet electron beam plasma chemical vapor deposition method from monosilane-argon, monosilane-argon-helium, and monosilane-argon-hydrogen mixtures. Addition of argon to the argon-silane mixture increased the deposition rate of silicon films, whereas addition of helium and hydrogen to the same mixture decreased the growth rate. It is shown that the process of silicon film deposition by this method from argon-monosilane mixture is primarily governed by fast secondary electrons, and argon dilution of mixture leads to increasing concentration of fast secondary electrons and increasing deposition rate of silicon films. Dilution of the initial mixture with helium or hydrogen causes a decrease in the deposition rate either due to gas-dynamic behavior of the supersonic jet of the mixture of light and heavy gases, or due to the etching effect of metastable helium atoms or hydrogen atoms on the surface of the growing silicon film.  相似文献   

4.
It has been shown that the plasma-chemical modification of the morphology and composition of the surface phase influences the emissivity of silicon crystals. It has been found that the saturation of Tamm states with electrons during the preparation of atomically clean silicon surfaces, along with stabilizing passivation of surface atoms in a highly ionized microwave plasma using Halon 14, decreases a threshold electric field at which field emission begins more than twofold and increases the maximal density of the field emission current by more than an order of magnitude compared with wafers covered by native oxide or subjected to ion physical etching in argon. Physicochemical mechanisms responsible for the modification of the silicon surface and the field-emission properties of silicon have been considered.  相似文献   

5.
The adsorption-induced Fermi level pinning is shown to occur at the coverages Θ* corresponding to a shallow extremum or saturation of the work function of the system. Equations for Θ* are derived within a modified Anderson-Newns adsorption model. Experimental data on the adsorption of atoms of alkali, alkaline-earth (Ba), and rare-earth metals and hydrogen on semiconductors (silicon, gallium arsenide, and titanium dioxide) are analyzed. The position of the Fermi level on the surface of a semiconductor is estimated.  相似文献   

6.
We prepared silicon nanocrystallites by pulsed laser ablation (PLA) of a Si target in hydrogen background gas. A mixture of hydrogen and helium was used as a background gas and the hydrogen partial pressure was varied. The deposited nanocrystal-film system shows a hierarchical structure composed of surface hydrogenated silicon nanocrystallites as the primary structure and aggregates of the nanocrystallites as the secondary structure. The size of the primary particles was not sensitive to the hydrogen partial pressure, while the porosity of the secondary structure constituted by the aggregation of the primary particles increased with increasing hydrogen partial pressure. This indicates that the surface is stabilized and that aggregation of the primary structure is depressed by surface hydrogenation. The optical gap energy of the deposits shifted to higher energy with increasing hydrogen partial pressure due to the formation of well-isolated nanocrystallites by surface stabilization. These results indicate that PLA in hydrogen gas is a promising technique to prepare surface stabilized and controlled silicon nanocrystallites.  相似文献   

7.
The micro-mechanism of the silicon-based waveguide surface smoothing is investigated systematically to explore the effects of silicon-hydrogen bonds on high-temperature hydrogen annealing waveguides.The effect of siliconhydrogen bonds on the surface migration movement of silicon atoms and the waveguide surface topography are revealed.The micro-migration from an upper state to a lower state of silicon atoms is driven by siliconhydrogen bonding,which is the key to ameliorate the rough surface morphology of the silicon-based waveguide.The process of hydrogen annealing is experimentally validated based on the simulated parameters.The surface roughness declines from 1.523 nm to 0.461 nm.  相似文献   

8.
Adsorption of atomic hydrogen on an ideal (001) silicon surface is investigated in the present paper. Saturation of one of the two dangling bonds of a silicon atom on this surface by hydrogen removes the interaction (hybridization) between them, resulting in the appearance of a bonding and an antibonding chemisorption state associated with the attacked dangling bond, and in the shift of the peak of the remaining unsaturated dangling bond to the energy typical of a surface state of the (111) surface. Further saturation leads to the disappearance of this peak from the energy spectrum. An analogous situation occurs for the silicon atom with two dangling bonds on a step on the (111) surface, when hydrogen is chemisorbed. Both examples testify to the local chemical nature of Shockley surface states in silicon.The authors thank A. N. Sorokin for useful discussions.  相似文献   

9.
Carburizing and diamond deposition experiments were done on titanium, niobium, and molybdenum substrates with argon-methane-hydrogen gas mixture plasma jets at a pressure of 200 torr for various hydrogen concentrations. Diamond deposition was obtained at a volume of 7% hydrogen added to the plasma jet. The deposits were markedly different on the different metal substrates. Diamond deposits with habit planes were clearly observed on niobium and molybdenum, while the deposit on titanium consisted of ball-like particles. The emission spectra from the plasma jet were the same, for all the substrates, proving that the difference in the diamond deposit depends on the substrate characteristics. CH, C2, hydrogen, and carbon atoms were identified in the plasma jet. The difference in the deposits is attributed to the reactivity of carbon species in the plasma with the metal surface as well as to the solubility of hydrogen in metals  相似文献   

10.
The dependence of the binding energy and the activation energy of adsorption of hydrogen atoms on the number of previously adsorbed particles and their position—on one or both sides of a cluster, on nearest or distant neighbors (carbon atoms)—is investigated by quantum-chemical modeling. A hypothesis of the formation of adsorption sites (islands) on graphene at the initial stage of its saturation by hydrogen is discussed.  相似文献   

11.
In the framework of the kinetic approach based on data of technological experiments, the range of characteristic rates of decomposition of disilane radical molecules adsorbed on the surface during the growth of a silicon layer is determined. The relationship between the rate of incorporation of silicon atoms into a growing crystal and the characteristic rate of pyrolysis of hydride molecules on the growing surface is established. The temperature dependences of the decomposition rate of disilane molecules exhibit an unusual activationless behavior in the growth temperature range. The form of the observed dependences is determined by the pyrolysis model, conditions of transferred of hydrogen from an adsorbed molecule onto the surface of the growing layer, being a function of the gas pressure and temperature in the reactor. It is demonstrated that the basic features of the behavior of the decomposition rate of disilane molecules are controlled by the specifics of the interaction of the silicon dihydride molecular beam with the growth surface under conditions of low and high degrees of bonding of hydrogen to free surface bonds. The temperature dependences are qualitatively described by a relation composed of two activation curves with different activation energies at low and high temperatures and preexponential factors depending on the surface coverage by hydrogen atoms.  相似文献   

12.
We analyze the effect of irradiation by heavy ions on the formation of blisters on the silicon surface preliminarily ion-doped with hydrogen. An attempt is made at differentiating inelastic and elastic processes of interaction between ions and Si atoms using bombardment of the sample with high-energy charged particles through a bent absorbing filter by varying the radiation doses and the energy of bombarding Xe ions. It is found that irrespective of specific ionization energy losses of heavy ions, the blister formation is completely suppressed in the zone of the inelastic interaction during postradiation annealing. Conversely, stimulated development of hydrogen porosity takes place at the same time in the zone of elastic interaction, which is manifested in the form of blisters and flaking.  相似文献   

13.
Hexamethyldisiloxane (HMDSO) films were deposited on polyethylene (PE, (C2H4)n) powder by hollow cathode glow discharge. The reactive species in different HMDSO/Ar plasmas were studied by optical emission spectroscopy (OES). Increasing the HMDSO fraction in the gas mixture additional compounds like CHx, OH, SiC and SiO can be identified. After deposition the formed silicon and carbon containing groups (C–O, C=O, SiC and SiO) on the PE powder surface have been analyzed by X-ray photoemission spectroscopy (XPS). Changes in wettability depending on the HMDSO fraction were investigated by contact angle measurements (CAM). The free surface energy of the PE powder decreases with increasing HMDSO fraction in the process gas and encapsulation of the powder particles occurs. An aging effect of the plasma treated PE surface was observed depending on the process gas composition. The higher the HMDSO fraction the less is the aging effect of the plasma treated PE surface.  相似文献   

14.
This paper reports on a study of the stability of silicon clusters of intermediate size at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a ‘coat’ from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen ‘coat’ has the most stable number (close to four) of Si–Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si60 cluster are considered in the temperature range 10 K ≤ T ≤ 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si60 cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen ‘coat’ and containing 60 hydrogen atoms in the interior space has a higher stability. Such clusters have smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270–280 K.  相似文献   

15.
The stability of different silicon nanoparticles are investigated at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a “coat” from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen “coat” has the most stable number (close to four) of Si–Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si60 cluster are considered in the temperature range 10 K ≤ T ≤ 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si60 cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen “coat” and containing 60 hydrogen atoms in the interior space has a higher stability. Such cluster has smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270-280 K.  相似文献   

16.
A complex spectroscopic investigation of oil-in-water emulsions containing silicon nanoparticles synthesized by plasma chemical vapor deposition has been performed for the first time. It is established by electron microscopy and Raman and IR spectroscopy that nanoparticles synthesized by this method have a crystalline structure, sizes of about 10–15 nm, and an outer shell whose chemical composition depends on the powder synthesis atmosphere. Comparative measurements of the transmission spectra of silicon-containing emulsions showed that their transmission, taking into account scattering, decreases with a decrease in wavelength in the range below 450 nm. The wavelength dependences for particles with an oxynitride outer shell and particles having an oxide shell are significantly different. This result indicates a contribution of the outer shell of silicon nanoparticles to the transmission spectra of emulsions. This factor must be taken into account in design of UV protectors based on silicon powder. In addition, calculations performed for transparent media containing silicon nanoparticles predict the possibility of enhancement of the protective properties of such emulsions in the UV range with increasing sizes of particles above 10 nm.  相似文献   

17.
《Physics letters. A》1988,126(7):427-430
Recent theoretical calculations are discussed which show that the minimum energy site for hydrogen in silicon is the bond-centered site, while a secondary minimum is at the anti-bonding site, it is noted that these results are strongly dependent on the relaxation experienced by the silicon atoms neighboring the hydrogen. Several experimental results are discussed, namely, the observed model of the hydrogen-passivated acceptor, etching of the silicon surface by hydrogen, the exponential depth dependence of the near-surface hydrogen diffusion profile, and related muonium results, and from these results it is argued that, in some instances at least, the BC-site is the lowest energy site for hydrogen.  相似文献   

18.
Sputtering can be defined as the process whereby particles leave the surface as a direct consequence of the presence of incident radiation. When particles leave the surface as a result of receiving momentum from the collision cascade induced by the incident radiation, the process is called “physical sputtering”. If the incoming radiation (ions, electrons, or photons) induces a chemical reaction which leads to the subsequent desorp-tion of particles, the process could be classified as “chemical sputtering”. There are a number of molecules such as CH4, CF4, CF3H, CF3CI, etc., whose binding energy to a large variety of surfaces is believed to be only a few kcal/mole. Therefore, these molecules will not remain absorbed at room temperature. Consequently, if they are generated from surface atoms by radiation-induced processes, they will almost immediately desorb into the gas phase. This process is one type of chemical sputtering. Recent data obtained in plasma environments suggest that this type of reaction is a widely occurring phenomena: however, few systematic quantitative investigations of the subject have been completed. In this paper we will review the evidence for chemical sputtering and discuss mechanisms based on experimental information obtained for the chemical sputtering of silicon and SiO2 under argon ion bombardment in the presence of a molecular beam of XeF2. Under these conditions, 25 or more silicon atoms can leave the surface per incident argon ion. About 75% of the silicon is emitted as SiF4 (gas) and the rest leaves as silicon atoms or SiFx radicals. The total yield (silicon plus fluorine) is greater than 100 atoms/ion. The measured yields are a strong function of XeF2 flux and a much weaker function of ion energy in the range 500-5000 eV. The chemical-sputtering yield for SiO2 is smaller than that of silicon by about an order of magnitude, but it is still larger than the physical-sputtering yield. Moreover, SiO2 is also sputtered by electrons. These results indicate that the incident radiation induces a chemical reaction between silicon and adsorbed fluorine which produces SiF4, and the SiF4 is subsequently desorbed into the gas phase. We define this process as chemical sputtering. The large yields are probably a consequence of weak binding between the surface and the SiF4 molecule.  相似文献   

19.
The main parameters of the plasma of high-current hydrogen-cesium glow discharges of surface-plasma (planotron and Penning) sources of negative hydrogen ions are determined using contact-free spectroscopic methods and compared for identical discharge current densities. The elemental and charge composition of the plasma is established. The temperature of the hydrogen atoms and the energy of the visible-range radiation of the plasma discharge are measured and estimates of the electron density in the plasma are made. The dynamics of the change in the parameters of the discharge plasma of a Penning source — the densities of hydrogen atoms, cesium atoms and ions, and molybdenum atoms — is tracked during a discharge pulse with spatial resolution along two coordinates. It is observed that cesium atoms and ions and molybdenum atoms are pent up near the cathode surface. Zh. Tekh. Fiz. 68, 32–38 (October 1998)  相似文献   

20.
Analytic equations relating the rate of the incorporation of silicon atoms into a growing crystal to the characteristic frequency of the pyrolysis of silane molecules on the surface of silicon were obtained over the temperature range corresponding to the epitaxial growth of silicon films. As distinct from the earlier works, it was assumed that adsorbed silicon atoms and monosilane molecules formed double bonds with the surface. The data of technological experiments for the most extensively used pyrolysis models obtained thus far were used to determine the region of the characteristic frequencies of the decomposition of hydride molecule radicals adsorbed on the surface of a silicon plate over the temperature range 450–700°C. The temperature dependence of the frequency of monosilane molecule decomposition was shown to be to a great extent determined by the form of the temperature dependence of the $ \tilde v_{SiH_2 }^0 $ \tilde v_{SiH_2 }^0 preexponential factor. It was also found that the characteristic frequency of the decomposition of silane molecules was sensitive to the stage of pyrolysis at which hydrogen atoms released from silane molecules were captured by the surface. Decomposition occurred at the highest rate if hydrogen molecules were adsorbed at the stage of the adsorption of monosilane. The lowest rate of decomposition was observed if hydrogen molecules were adsorbed at the stage of the decomposition of radicals already captured by the surface. The temperature dependence of the coefficient of adsorption of monosilane molecules was characterized by a negative activation energy of the process for almost all the most important system models over the temperature range of growth. At elevated growth temperatures, the adsorption of monosilane molecules by the surface of silicon proceeded via an intermediate state characterized by the difference of desorption and chemisorption energies on the order of 0.28 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号