We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composited prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55?×?103 M?1, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0 % to 106.0 % which underpins the excellent performance of this SWNT-based DNA sensor.
Figure
A biosensor based on DNA and single walled carbon nanotubes modified glassy carbon electrode displays a linear electrochemical response to bisphenol A in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). 相似文献
We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M?1 cm?2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons.
Figure
Single-walled carbon nanotubes-polylysine (SWCNT-PLL) nanocomposite was prepared and thoroughly characterized. The obtained nanocomposite was used as a platform to immobilize tyrosinase (Tyr) onto a glassy carbon electrode (GCE) to fabricate a biosensor for bisphenol A (BPA) 相似文献
A simple and rapid electrochemical method is developed for the determination of trace-level norfloxacin, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNTs/Nafion film-coated glassy carbon electrode (GCE) is constructed and the electrochemical behavior of norfloxacin at the electrode is investigated in detail. The results indicate that MWCNTs modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for norfloxacin (NFX) with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the current for oxidation of selected analyte is enhanced significantly in comparison to the bare GCE. The electrocatalytic behavior is further exploited as a sensitive detection scheme for the analyte determinations by linear sweep voltammetry (LSV). Under optimized condition in voltammetric method the concentration calibration range and detection limit (S/N=3) are 0.1-100 micromol/L and 5 x 10(-8)mol/L for NFX. The proposed method was successfully applied to NFX determination in tablets. The analytical performance of this sensor has been evaluated for detection of the analyte in urine as a real sample. 相似文献
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs) via continuous cycling between 0 and 0.9 V (vs. SCE). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V. The apparent surface coverage of the electrode is at least 24 times higher (2.7?×?10?10 mol cm?2) than that obtained with a bare GCE (1.1?×?10?11 mol cm?2). This is attributed to a remarkably strong synergistic effect between the acid-pretreated SWCNTs and the electrodeposited PCV coating. Response is fast (2 s) and sensitive (281 mA M?1 cm?2). Other features include a wide linear range (150 nM to 0.4 mM) and a low detection limit (150 nM at an SNR of 3). The sensor has been successfully applied to the determination of hydrazine in water and cigarette samples with good accuracy and precision. In addition, the morphology and the wetting properties of the coating were studied by scanning electromicroscopy and contact angle measurements.
Figure
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V with fast response, wide linear range and a low detection limit. 相似文献
Carbon-ceramic electrodes (CCE) modified with carbon nanotubes were prepared, and the electrochemical behavior towards acetaminophen (ACOP) was investigated using both a bare CCE and electrodes modified with either single walled carbon nanotubes (SWCNT) or multi walled carbon nanotubes (MWCNT) in an effort to understand which of them is the better choice in terms of electrocatalyzing the oxidation of ACOP, and thus for sensing it. The SWCNT are found to be the better material in significantly enhancing the oxidation peak current and improving the reversibility of the oxidation. Under optimal conditions, linearity between the oxidation peak current and the concentration of ACOP is obtained for the concentration range from 40?nM to 85???M, with a detection limit of 25?nM. Finally, ACOP was successfully determined with the SWCNT modified electrode in pharmaceutical samples.
Cyclic voltammograms recorded at the bare CCE (1, 4); MWCNT/CCE (2, 5); SWCNT/CCE (3, 6) in 0.1 M phosphate buffer solution of pH 7.0 in the absence and in the presence of 4.0 mM ACOP, respectively. Scan rate: 50 mV s-1. 相似文献
We describe a sensitive chronocoulometric biosensor for the sequence-specific detection of DNA. It is based on a glassy carbon electrode modified with multi-walled carbon nanotubes, polydopamine, and gold nanoparticles. The ruthenium(III)hexammine complex acts as the electrochemical indicator. Electrochemical impedance spectra and scanning electron microscopy are employed to investigate the assembly of the electrode surface. The signals of the ruthenium complex electrostatically bound to the anionic phospho groups of the DNA strands are measured by chronocoulometry before and after hybridization. The difference in signal intensity is linearly related to the logarithm of the concentration of the target DNA in the range of 1.0 nM to 10 fM with a detection limit of 3.5fM (S/N?=?3) under optimal conditions. This biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of complementary target DNA in human serum sample with satisfactory results.
Figure
We describe a sensitive chronocoulometric biosensor based on a glassy carbon electrode modified with gold nanoparticles, poly(dopamine), and carbon nanotubes. The biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of Helicobacter pylori in human serum with a satisfactory result. 相似文献
A biosensor with high stability was prepared to determine hydrogen peroxide (H2O2). This hydrogen peroxide biosensor was obtained by modifying glassy carbon electrode (GCE) with a composite film composed of gelatin-multiwalled carbon nanotubes. Catalase (Cat) was covalently immobilized into gelatin-multiwalled carbon nanotubes modified GCE through the well-known glutaraldehyde (GAD) chemistry in order to enhance the stability of electrodes. The enzyme sensor can achieve direct electrochemical response of hydrogen peroxide. The cyclic voltammograms at different scan rates, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) tests indicate that the enzyme sensor performs positively on increasing permeability, reducing the electron transfer resistance, and improving the electrode performance. The linear response of standard curve for H2O2 is in the range of 0.2 to 5.0 mM with a correlation coefficient of 0.9972, and the detection limit of 0.001 mM. A high operational and storage stability is demonstrated for the biosensor. The peak potential at room temperature in two consecutive weeks stays almost consistent, and the enzyme activity is kept stable even after 30 days in further study. 相似文献
A novel sensitive electrochemical biosensor based on magnetite nanoparticle for monitoring DNA hybridization by using MWNT-COOH/ppy-modified glassy carbon electrode is described. In this new detection system, mercapatoacetic acid (RSH)-coated magnetite nanoparticles, capped with 5′-(NH2) oligonucleotide, is used as DNA probe to complex 29-base polynucleotide target (a piece of human porphobilinogen deaminase PBGD promoter from 170 to 142). Target sequence hybridized with the probe results in the decrease of the reduction peak current of daunomycin connected with probe. The response of non-complementary sequence was almost the same as the blank, and the response of three-base mismatched sequence within 29-base polynucleotide was obviously distinguished from complementary sequence, which can easily identify point mutation of DNA. The equation of calibration plot is ip (μA) = 0.8255 − 0.0847ctarget oligonucleotide × 1013 in the range of 6.9 × 10−14 to 8.6 × 10−13 mol/L, and correlation coefficient is 0.9974. The detective limit is 2.3 × 10−14 mol/L of target oligonucleotide. This device can be optimized for the detection of complex sequence. 相似文献
We describe a new kind of electrochemical immunoassay for the peptide hormone prolactin. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of graphene, single walled carbon nanotubes and gold nanoparticles (AuNPs) in a chitosan (CS) matrix. The graphene and the single wall carbon nanotubes were first placed on the GCE, and the AuNPs were then electrodeposited on the surface by cyclic voltammetry. This structure results in a comparably large surface for immobilization of the capturing antibody (Ab1). The modified electrode was used in a standard sandwich-type of immunoassay. The secondary antibody (Ab2) consisted of AuNPs with immobilized Ab2 and modified with biotinylated DNA as signal tags. Finally, alkaline phosphatase was bound to the biotinylated DNA-AuNPs-Ab2 conjugate via streptavidin chemistry. The enzyme catalyzes the hydrolysis of the α-naphthyl phosphate to form α-naphthol which is highly electroactive at an operating voltage as low as 180 mV (vs. Ag/AgCl). The resulting immunoassay exhibits high sensitivity, wide linear range (50 to 3200 pg∙mL‾1), low detection limit (47 pg∙mL‾1), acceptable selectivity and reproducibility. The assay provides a pragmatic platform for signal amplification and has a great potential for the sensitive determination of antigens other than prolactine.
In this work, an electrochemical sensor 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone/multiwalled carbon nanotubes/glassy carbon
electrode (GCE) was prepared for the determination of xanthine (XN) in the presence of an excess of uric acid. Cyclic voltammetry
and differential pulse voltammetry were used to characterize the electrode. The oxidation of XN occurred in a well-defined
peak having Ep 0.73 V in phosphate buffer solution of pH 6.0. Compared with the bare GCE, the electrochemical sensor greatly enhanced the
oxidation signal of XN with negative shift in peak potential about 110 mV. Based on this, a sensitive, rapid, and convenient
electrochemical method for the determination of XN has been proposed. Under the optimized conditions, the oxidation peak current
of XN was found to be proportional to its concentration in the range of 0.3~50 μM with a detection limit of 0.08 μM. The analytical
utility of the proposed method was demonstrated by the direct assay of XN in urine samples and was found to be promising at
our preliminary experiments. 相似文献
In this work, a simple experimental procedure was reported for the electroanalytical determination of selenium (IV) using reduced graphene oxide (rGO) to modify glassy carbon electrode (GCE). The rGO was obtained by reduction of graphene oxide obtained via Hummer’s method. The synthesised rGO was characterised using X-ray diffraction, Raman spectroscopy, scanning electron microscope (SEM), energy-dispersive spectroscopy and transmission Electron microscopy (TEM). GCE was modified with rGO and the electrochemical properties of the bare and modified electrode were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The results obtained showed that the modified electrode exhibited more excellent electrochemical properties than the bare GCE. The optimum conditions for detection of selenium in water using square wave anodic stripping voltammetry were as follows: deposition potential ?500 mV, pH 1, pre-concentration time of 240 s and 0.1 M nitric acid was used as supporting electrolyte. The linear regression equation obtained was I (µA) = 0.8432C + 9.2359 and the detection limit was calculated to be 0.85 μg L?1. However, Cu(II) and Cd(II) are the two cations that interfered in the analysis of selenium in water.The sensor was also applied for real sample water analysis and the result obtained was affirmed with inductively coupled plasma optical emission spectroscopic method. It is believed that our proposed sensor hold promise for practical application. 相似文献
A simple, polishable and renewable DNA biosensor was fabricated based on a zirconia modified carbon paste electrode. Zirconia was mixed with graphite powder and paraffin wax to produce the paste for the electrode, and response-optimized at 56% graphite powder, 19% ZrO(2) and 25% paraffin wax. An oligonucleotide probe with a terminal 5'-phosphate group was attached to the surface of the electrode via the strong affinity of zirconia for phosphate groups. DNA immobilization and hybridization were characterized by cyclic voltammetry and differential pulse voltammetry, using methylene blue as indicator. Examination of changes in response with complementary or non-complementary DNA sequences showed that the developed biosensor had a high selectivity and sensitivity towards hybridization detection (< or =2x10(-10) M complementary DNA detectable). The surface of the biosensor can be renewed quickly and reproducibly (signal RSD+/-4.6% for five successive renewals) by a simple polishing step. 相似文献
Electrochemical properties of nicotine at the glassy carbon electrode modified with multi-walled carbon nanotubes were explored. Nicotine underwent irreversible reduction at the modified electrode, which was an adsorption-controlled process with two protons and two electrons. The reductive peak current of nicotine significantly increased at the modified electrode compared with the bare glassy carbon electrode, suggesting that the multi-walled carbon nanotubes can enhance the electron transfer rate. The current was proportional to the concentration of nicotine over two line ranges, and the detection limit was 9.3 µM (at S/N?=?3). For ten parallel detections of 0.62 mM nicotine, the relative standard deviation was 2.67%, suggesting that the film modified electrode had excellent reproducibility. The modified electrode was applied to the direct determination of nicotine in tobacco samples with good sensitivity, selectivity and stability. 相似文献
The electrocatalysis of nitrite in solutions at an inorganic film modified glassy carbon electrode was studied. The modifier was an electrodeposited thin inorganic film of the copper-heptacyanonitrosylferrate (CuHNF). Cyclic voltammetry of the modified electrode in a nitrite solution revealed that both oxidation and reduction of nitrite were catalyzed and the electrocatalytic currents were controlled by the diffusion of nitrite. Voltammetric and amperometric responses were investigated. When applied as an amperometric sensor in a flow injection system, the modified electrode permitted detection at — 0.55 V, over 500 mV lower than at the naked electrode surface. A linear response range extending from 1 × 10–6 to 1 × 10–3M nitrite was obtained, with a detection limit of 3 × 10–7M. The relative standard deviation for 50 repetitive injections with a 5 × 10–5M nitrite solution was less than 4%. The procedure was applied to the determination of nitrite in saliva and nitrate. 相似文献
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes. 相似文献
For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0 × 10−15 − 1.0 × 10−7 M, with a detection limit of 1.0 × 10−17 M (S/N = 3). The prepared sensor also showed good stability (14 days), reproducibility (RSD = 2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. 相似文献