首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The selectively excited steady-state luminescence spectra, as well as the decay time characteristics of the luminescence, of prodan in polar solvents excited by picosecond radiation are studied. The steady-state luminescence spectra exhibit a strong inhomogeneous broadening, which is the most pronounced at elevated solution viscosities. The temporal characteristics of the luminescence decay in different spectral ranges and the instantaneous spectra suggest the presence of relaxation processes resulting in a long-wavelength shift of the emission spectrum during the lifetime of the excited state. A relation between the relaxation shift of the emission spectrum and the intermolecular orientational relaxation of solvate molecules is established.  相似文献   

2.
Beryllium oxide crystals are studied by time-resolved optical and luminescence vacuum-UV spectroscopy. The low-temperature luminescence spectra and the luminescence decay kinetics (2.5–10 eV, 1–500 ns) upon selective photoexcitation, and also the luminescence excitation and reflectivity spectra (8–35 eV), are analyzed for BeO crystals with the optic axis aligned parallel and perpendicular to the electric vector of exciting polarized synchrotron radiation. It is found that the radiative relaxation of electronic excitations proceeds through a large number of channels. The excited states of self-trapped excitons are characterized by different multiplicity depending on the excitation energy and the sample orientation.  相似文献   

3.
The temporal characteristics of luminescence decay in concentrated solutions of prodan excited by picosecond laser radiation are studied The electronic spectra exhibit a strong inhomogeneity, which, in the case of elevated solution viscosity, manifests itself under steady-state conditions of measurements. The temporal characteristics of the luminescence decay and the time-resolved luminescence spectra point to the occurrence of relaxation processes causing a long-wavelength shift of the emission band with time. An increase in the prodan concentration from 10?4 to 5 × 10?2 M leads to a faster increase in the luminescence lifetime in the long-wavelength spectral region and to a higher rate of shifting of the instantaneous spectra, which is related to energy transfer over the states of inhomogeneous broadening of the luminophore.  相似文献   

4.
Measurements of emission spectra, excitation spectra, intensity dependence of the luminescence, decay of the luminescence, and temperature dependence of the luminescence in ZnO are reported. The results for the emission at 1·70 eV, with the exception of the decay of the luminescence, were found to be similar to those of the yellow (2·02 eV) emission band in ZnO. Both bands could be excited at the band edge and directly, the intensity of both bands was found to be linear with excitation strength and the asymptotic regions of the temperature dependence of both bands could be approximated by exponential functions. It is proposed that the luminescent transition is an electron transition from the edge of the conduction band to a hole trapped in the bulk at 1·60 eV above the edge of the valence band, and that the luminescence center is an unassociated acceptor-like center.  相似文献   

5.
The emission spectra and the luminescence decay times of KBr, RbBr, and RbCl crystals doped with Pb2+ and excited in the A-absorption band have been studied in the temperature range 5–300 K. The emission-lineshape spectra have been analysed in terms of skew-Gaussian bands. New bands have been observed in RbCl and RbBr at very low temperatures. While the luminescence decay of KBr:Pb2+ and RbBr:Pb2+ show only a single component with a decay time τ ~ 20 ns, RbCl:Pb2+ shows a short and a long component. The reason for the missing long component in KBr:Pb2+ and RbBr:Pb2+ is tentatively attributed to an anomaly in the structure of the adiabatic potential energy surface (APES) of the excited states.  相似文献   

6.
We consider the method of measuring optically stimulated persistence for radiation dosimetry based on separation in time of stimulating irradiation and of the recording of luminescence response. It is shown that here stimulation by shortwave radiation is possible, which is overlapped in the spectrum with the dosimetric luminophor radiation. We have measured the spectra of stimulation of a number of industrial dosimetric luminophors. The special features of the recording of optically stimulated persistence are discussed for the luminophors that contain manganese (Mn2+) as an activator and for which the time of decay of the luminescence which is excited within the centers is 40–50 msec. The method is applicable to the dosimetry of natural varieties of quartz for dating corresponding deposits.  相似文献   

7.
The influence of temperature and dynamic quenching on the properties of excited states of the normal and tautomeric 3-hydoxyflavone forms was studied. The stationary two-band fluorescence spectra of this luminophore in acetonitrile were recorded and analyzed. The spectra were observed under excitation by electromagnetic radiation in the region of the S 1 absorption band over the temperature range 20–80°C. TEMPO was used as a quencher of the excited state. Heating caused temperature quenching of luminescence, and the tautomer formed via the excited state of the normal form of the luminophore was quenched more strongly both in pure solvent and in the presence of the quencher. An analysis of two-band fluorescence parameters led us to conclude that solution heating over the temperature range studied increased the rate of proton transfer by 1.25 times. The introduction of the quencher also accelerated proton transfer by 1.16–1.25 times as the temperature increased from room temperature to 80°C.  相似文献   

8.
Measurements of fast luminescence decay and time-resolved spectra revealed novel ultra-fast luminescence with the lifetime of several tens ps in heavy-ion-irradiated single crystals of LiF, NaF, NaCl, KCl, KBr, KI, RbI, CsCl, CsBr, CsI, -alumina, and MgO. The luminescence is furthermore characterized by a super-linear increase in the efficiency with increasing excitation density, non-tailed decay curve, and temperature-insensitive decay-rate and yield. The results mean that the luminescence neither originates from localized excited states such as self-trapped excitons, free excitons, excited defects, and excited impurity centers nor their interaction. A process which does not contradict the experimental results is the formation of the e–h plasmas and the luminescence from them.  相似文献   

9.
Luminescence properties of CdMoO4 crystals have been investigated in a wide temperature range of T=5–300 K. The luminescence-excitation spectra are examined by using synchrotron radiation as a light source. A broad structureless emission band appears with a maximum at nearly 550 nm when excited with photons in the fundamental absorption region (<350 nm) at T=5 K. This luminescence is ascribed to a radiative transition from the triplet state of a self-trapped exciton (STE) located on a (MoO4)2? complex anion. Time-resolved luminescence spectra are also measured under the excitation with 266 nm light from a Nd:YAG laser. It is confirmed that triplet luminescence consists of three emission bands with different decay times. Such composite nature is explained in terms of a Jahn–Teller splitting of the triplet STE state. The triplet luminescence at 550 nm is found to be greatly polarized in the direction along the crystallographic c axis at low temperatures, but change the degree of polarization from positive to negative at T>180 K. This remarkable polarization is accounted for by introducing further symmetry lowering of tetrahedral (MoO4)2? ions due to a uniaxial crystal field, in addition to the Jahn–Teller distortion. Furthermore, weak luminescence from a singlet state locating above the triplet state is time-resolved just after the pulse excitation, with a polarization parallel to the c axis. The excited sublevels of STEs responsible for CdMoO4 luminescence are assigned on the basis of these experimental results and a group-theoretical consideration.  相似文献   

10.
《Radiation measurements》2007,42(4-5):742-745
Beryllium oxide (BeO) crystals were investigated by time-resolved low temperature VUV-spectroscopy at the SUPERLUMI station and BW3 beam line of HASYLAB (DESY, Hamburg). Photoluminescence spectra (3–10.5 eV), luminescence decay kinetics upon selective photoexcitation, as well as luminescence excitation (50–650 eV) and reflectivity (9–35 eV) spectra were measured and analyzed for oriented BeO crystals. It was shown that study of oriented crystals makes the traditional time-resolved spectroscopy method essentially more informative. Formation of the self-trapped exciton excited states of different multiplicity was found to sensitively depend on excitation energy and mutual orientation of the crystal's C optical axis and electric vector E of exciting polarized synchrotron radiation.  相似文献   

11.
介绍了上海光源XAFS线站(BL14W1)的时间分辨X射线激发发光光谱(TRXEOL)实验系统。该系统基于时间相关单光子计数法的原理设计,以同步辐射光源的脉冲特性及其良好的时间结构为基础,通过集成定时系统、光谱仪系统和核电子学系统,在国内同步辐射装置上首次实现了TRXEOL实验方法。定时系统提供同步触发电脉冲,用来标志X射线脉冲打到样品上的时刻,同步精度约6 ps,延时分辨率5 ps;光谱仪经光电探测器把样品发光信号转换成电脉冲,核电子学系统对定时电脉冲和发光电脉冲之间的时间差进行统计分析,可得到样品的发光衰减曲线,再结合光谱仪的扫描控制和数据获取系统,可得到样品的TRXEOL光谱。利用该实验系统可以测量发光样品的普通XEOL光谱、发光衰减曲线和TRXEOL光谱。用ZnO纳米线样品,进行了实验验证。实验得到的普通XEOL光谱能够明显区分该样品在390和500 nm处的两个发光中心;得到的发光衰减曲线能够区分小于2 ns的快发光过程和200 ns的慢发光过程;分别在0~1, 2~200和0~200 ns时间窗口内测量得到了ZnO纳米线样品的TRXEOL光谱,在这3个发光时间带内得到了对应的发光信息;ZnO纳米线样品发光衰减曲线快发光峰的半高宽约为0.5 ns,证明了TRXEOL系统的最小时间分辨率小于1 ns。该系统在国内同步辐射装置上提供了用于研究发光材料的TRXEOL实验方法,该方法与发光模式的XAFS方法相结合,可更深入的研究发光材料的发光行为。整个实验平台操作简便、工作稳定可靠,不仅为发光材料的研究提供了研究手段,还为进一步开展发光模式XAFS和TRXEOL成像等实验方法提供技术前提。  相似文献   

12.
Emission and excitation spectra, luminescence polarization and decay kinetics have been studied for CsI:Pb crystals in the 0.36-300 K temperature range. The origin of the excited states responsible for the optical characteristics has been discussed. It has been concluded that the doublet ≈3.70 eV absorption (excitation) band is caused by the electronic transitions into the Pb2+ triplet state split due to the presence of a cation vacancy near a Pb2+ ion, while the higher-energy bands are of the charge-transfer origin. Like in CsI:Tl, four emission bands of CsI:Pb have been found to belong to the main luminescence centres. Two emission bands, peaking at 3.1 and 2.6 eV, are suggested to arise from the triplet relaxed excited state of a Pb2+ ion. Two visible emission bands, peaking at 2.58 and 2.23 eV, are interpreted as the luminescence of an exciton localized near the Pb2+ ion.  相似文献   

13.
The decay time of the luminescence involving bound minority carriers shortens above some temperature with increasing temperature owing to thermal quenching. However, above some higher temperature there will be a plateau since the luminescence decay cannot be faster than the decay of the excited free minority carriers.  相似文献   

14.
Ca(9)Lu(PO(4))(7):Ce (3+) and Ca (9)Lu (PO (4))(7):Pr (3+) polycrystalline materials were synthesized by solid state reaction at high temperature. The materials were characterized by powder x-ray diffraction (XRPD). The luminescence spectroscopy and the excited state dynamics of these compounds were investigated upon excitation with UV/VUV synchrotron radiation. Both materials showed efficient and fast 5d-4f emission upon direct VUV excitation into the 5d levels but only Ca(9)Lu(PO(4))(7):Ce (3+) revealed luminescence upon excitation across the bandgap. The decay kinetics of the 5d-4f emission upon VUV intra-center excitation is characterized by a decay time of 29?ns for Ce (3+) and 17 ns for Pr (3+) with no significant build-up after the excitation pulse. For the both compounds, no significant temperature dependence of the 5d-4f emission lifetime was observed within the range 8-300?K.  相似文献   

15.
The spectra of spontaneous and stimulated luminescence of Lu2O3: Eu (7 at %) nanopowders at different optical pumping intensities have been investigated. The obtained results—changes in the shape of the red luminescence spectra and in the lifetime of the 5 D 0 excited state of Eu3+ ions—indicate the onset of superluminescence with an increase in the excitation power. It has been found that an increase in the optical pumping intensity leads to a decrease in the luminescence decay time of the Lu2O3: Eu (7 at %) phosphor in the stimulated luminescence regime and to an increase in the quantum efficiency of red luminescence with a maximum at 611 nm.  相似文献   

16.
Thermoluminescence (TL), dose-dependence of TL, optically stimulated luminescence (OSL), and EPR of Eu-doped strontium sulphate are studied. Eu enters the host lattice in 2+ charge state and does not change the charge state during energy storage and release. OSL disappears during pulse-step annealing of excited luminophor at the temperatures corresponding to dosimetric TL peak. Dosimetric TL peak can be destroyed by a continuous optical stimulation of excited sample. Ionizing radiation creates radiation defects in the host lattice, with the ionized sulphate anions being stable hole centres well above room temperature. Optical stimulation in the blue band (460–470 nm) causes the captured holes to be transported to the luminescence centres, similarly acts the heating of luminophor. The model of energy storage and release is discussed.  相似文献   

17.
An algorithm and a program are developed to calculate the photoluminescence (PL) parameters for bulk single-crystal and nanoscale dielectrics excited with pulsed synchrotron radiation. The luminescence spectra of F and F + centers and the PL decay kinetics in single-crystal and nanoscale aluminum-oxide samples containing oxygen anion vacancies are calculated for various nanoparticle sizes. It is shown that a noticeable broadening of the bands and a decrease in the afterglow time is observed for nanoparticle sizes that are less than 20 nm.  相似文献   

18.
We have measured the absorption, luminescence, and luminescence excitation spectra, as well as the excited-state lifetimes and luminescence quantum yields, of 1,3,5-triazapentadiene complexes of platinum(II) in a solution, in the solid state, in an adsorbed state on a SiO2 surface, and in a polystyrene matrix at room temperature and at 77 K. We also have performed quantum-chemical calculations of the equilibrium geometry of the ground and excited states of the complexes and of the nature and structure of molecular orbitals.  相似文献   

19.
Studies of the luminescence of Bacillus thuringiensis spores and DNA of chickenblood erythrocytes are presented. Luminescence was excited by pulse-periodic ultraviolet laser radiation with duration of a separate pulse of 20 ns. The decay kinetics of luminescence and changes in the shape of the luminescence spectrum are considered. Noticeable changes in the photoluminescence spectra with delay in the registration system are detected. For a pulseperiodic mode of excitation, exciton–exciton quenching of luminescence in bacterial and DNA suspensions is observed. Studies of the influence of the geometrical shape of the cell on the photoluminescence spectra are performed.  相似文献   

20.
为了测量脉冲时间宽度小于20 ns时的射线时间分辨图像,发展了新型无机闪烁体Yb:YAG,并实验测量了晶体的发光衰减时间、X射线激发发光光谱、相对发光效率和空间分辨等性能,研究了Yb:YAG晶体的发光性能。实验表明,Yb:YAG发光有三种衰减成分,快成分衰减常数为1.2 ns,慢成分衰减常数与射线种类有关;X射线激发发光光谱在250~800 nm范围,有三个发光峰,分别为320,380和500 nm,且320 nm处强度最大;相对发光效率为1900 ph/MeV;使用钨分辨卡测得Yb: YAG空间分辨能力为2 lp/m,使用刀口法测得空间调制传递函数为0.5时的频率为0.7 lp/mm。结果说明Yb:YAG晶体性能能够满足所需测量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号