首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Core–shell, Au–Pt bimetal nanoparticles were successfully synthesized by a simple two-step method. Ultraviolet–visible spectra and transmission electron microscopy were used to characterize the nanoparticles. In the formation of Au-core/Pt-shell bimetal nanoparticles, the poly(N-vinyl-2-pyrrolidone) replacement of citrate and the existence of H2C2O4 play key roles.  相似文献   

2.
A pioneering procedure is presented for the photochemical synthesis of aqueous solutions of hollow bimetal silver-gold nanoparticles in the presence of poly-N-vinylpyrrolidone. The structure and properties of synthesized nanocages were studied by the methods of high-resolution transmission electron microscopy, UV visible spectroscopy, and energy-dispersive X-ray structural analysis. The mechanism of the formation of AgAu nanocages was suggested on the basis of the experimental data.  相似文献   

3.
Seeking for simple, rapid, and environmental-friendly routes to produce metal nanoparticles is quite attractive for various biotechnological applications. Biological synthesis method of silver nanoparticles has been found very promising due to their non-toxicity and simplicity. Here, the spores of Bacillus stratosphericus isolated from soil enriched with 30 % H2O2 were used for the production of silver nanoparticles. Furthermore, the possible mechanism of silver nanoparticle synthesis by the spores was elucidated for the first time. In this regard, dipicolinic acid (DPA) was shown to play a critical role as a nanoparticle-producing agent. UV–Vis absorption spectroscopy, X-ray diffraction technique, energy-dispersive spectroscopy, and transmission electron microscopy were used to characterize the nanoparticles. Unlike vegetative cells of B. stratosphericus, the spores and the purified DPA were capable of producing nanoparticles from silver nitrate (AgNO3). These biogenic nanoparticles, which were highly toxic against different pathogenic bacteria, showed mixed structures including spherical, triangular, cubic, and hexagonal with the approximate size between 2 and 20 nm in diameter. Our results illustrated the role of dipicolinic acid as a main factor for the synthesis of nanoparticles by the bacterial spores.  相似文献   

4.
The green synthesis of silver nanoparticles with the small size and high stability paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of silver nanoparticles is gaining more importance owing its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. In this study, focus on biosynthesis of silver nanoparticles using Polygonum hydropiper extract and its catalytic degradation of hazardous dye, methylene blue has been highlighted. The rapid reduction of silver (Ag) ions was monitored using UV-Visible spectrophotometer and showed formation of silver nanoparticles within less than one hour with maximum absorption of silver nanoparticles at 430 nm. The major functional groups present in the synthesis responsible for the formation of silver nanoparticles. It was identified by using Fourier Transform Infrared spectrophotometer (FTIR). Field Electron Scanning Microscope (FESEM) was used to characterise the nanoparticles synthesized using P.hydropiper. The morphology of silver nanoparticles was predominantly spherical and aggregated into irregular structure with average diameter of 60 nm. In addition, this report emphasizes the effect of the silver nanoparticles on the degradation rate of hazardous dyes by sodium borohydride (NaBH4). The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study.  相似文献   

5.
The impact of TiO2 nanoparticles on DNA synthesis in vitro in the dark and the molecular mechanism of such impact were studied. The impact of TiO2 nanoparticles on DNA synthesis was investigated by adding TiO2 nanoparticles in different sizes and at various concentrations into the polymerase chain reaction (PCR) system. TiO2 nanoparticles were premixed with the DNA polymerase, the primer or the template, respectively and then the supernatant and the precipitation of each mixture were added into the PCR system separately to observe the impact on DNA synthesis. Sequentially the interaction between TiO2 nanoparticles and the DNA polymerase, the primer or the template was further analyzed by using UV-visible spectroscopy and polyacrylamide gel electrophoresis (PAGE). The results suggest that TiO2 nanoparticles inhibit DNA synthesis in the PCR system in the dark more severely than microscale TiO2 particles at the equivalent concentration and the inhibition effect of TiO2 nanoparticles is concentration dependent. The molecular mechanism of such inhibition is that in the dark, TiO2 nanoparticles interact with the DNA polymerase through physical adsorption while TiO2 nanoparticles do with the primer or the template in a chemical adsorption manner. The disfunction levels of the bio-molecules under the impact of TiO2 nanoparticles are in the following order: the primer > the template > the DNA polymerase.  相似文献   

6.
A remarkable solvent effect in a single-phase synthesis of monodisperse amine-capped Au nanoparticles is demonstrated.Oleylamine-capped Au nanoparticles were prepared via the reduction of HAuCU by an amine-borane complex in the presence of oleylamine in an organic solvent.When linear or planar hydrocarbon(e.g.,n-hexane,n-octane,1-octadecylene,benzene,and toluene) was used as the solvent, high-quality monodisperse Au nanoparticles with tunable sizes were obtained.However,Au nanoparticles with poor size dispersity were obtained when tetralin,chloroform or cyclohexane was used as the solvent.The revealed solvent effect allows the controlled synthesis of monodisperse Au nanoparticles with tunable size of 3-10 nm.  相似文献   

7.
Anti‐galvanic reaction (AGR) not only defies classic galvanic theory but is a promising method for tuning the compositions, structures, and properties of noble‐metal nanoparticles. Employing AGR for the preparation of alloy nanoparticles has recently received great interest. Herein, we report an unprecedented alloying mode by way of AGR, in which foreign atoms induce structural transformation of the mother nanoparticles and enter the nanoparticles in a non‐replacement fashion. A novel, active‐metal‐doped, gold nanoparticle was synthesized by this alloying mode, and its structure resolved. A CdSH motif was found in the protecting staples of the bimetal nanoparticle. DFT calculations revealed that the Au20Cd4(SH)(SR)19 nanoparticle is a 8e superatom cluster. Furthermore, although the Cd‐doping does not essentially alter the absorption spectrum of the mother nanocluster, it distinctly enhances the stability and catalytic selectivity of the mother nanoclusters.  相似文献   

8.
The synthesis of a bifunctional coupling reagent possessing a triisopropoxysilyl group and a tert-butyl phosphonate ester is described. The tert-butyl phosphonate ester was used as an efficient and selective grafting reagent for the anchoring of the triisopropoxysilyl group at the surface of TiO2 and SnO2 nanoparticles under mild conditions. The triisopropoxysilyl group remained intact and did not react at the surface of the oxide nanoparticles. The reactivity of the triisopropoxysilyl group was then further investigated.  相似文献   

9.
《Solid State Sciences》2004,6(8):879-885
The synthesis of γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles and their magnetic properties are reported. Specific γ-Fe2O3 nanoparticles capable of initiating atom transfer radical polymerization (ATRP) were prepared by a ligand exchange reaction of ((chloromethyl)phenylethyl)-dimethylchlorosilane and caprylate-capped γ-Fe2O3 nanoparticles of 4 nm in diameter, and the ATRP of methyl methacrylate was carried out subsequently. These nanoparticles were characterized with Fourier transform infrared spectroscopy, transmission electron microscopy and Mössbauer spectroscopy. Low temperature magnetic properties investigated with SQUID magnetometry revealed that the coercivity and the blocking temperature changed slightly owing to surface effects.  相似文献   

10.
Synthesis and applications of new functional nanoparticles are topics of increasing interest in many fields of nanotechnology. Chemical modifications of inorganic nanoparticles are often necessary to improve their features as spectroscopic tracers or chemical sensors, and to increase water solubility and biocompatibility for applications in nano-biotechnology. Analysis and characterization of structured nanoparticles are then key steps for their synthesis optimization and final quality control. Many properties of structured nanoparticles are size-dependent. Particle size distribution analysis then provides fundamental analytical information. Asymmetrical flow field-flow fractionation (AF4) with multi-angle light scattering (MALS) detection is able to size-separate and to characterize nanosized analytes in dispersion. In this work we focus on the central role of AF4-MALS to analyze and characterize different types of structured nanoparticles that are finding increasing applications in nano-biotechnology and nanomedicine: polymer-coated gold nanoparticles, fluorescent silica nanoparticles, and quantum dots. AF4 not only size-fractionated these nanoparticles and measured their hydrodynamic radius (rh) distribution but it also separated them from the unbound, relatively low-Mr components of the nanoparticle structures which were still present in the sample solution. On-line MALS detection on real-time gave the gyration radius (rg) distribution of the fractionated nanoparticles. Additional information on nanoparticle morphology was then obtained from the rh/rg index. Stability of the nanoparticle dispersions was finally investigated. Aggregation of the fluorescent silica nanoparticles was found to depend on the concentration at which they were dispersed. Partial release of the polymeric coating from water-soluble QDs was found when shear stress was induced by increasing flowrates during fractionation.  相似文献   

11.
An electrochemical reduction method was used for the preparation of TiO2 nanoparticles in which agglomeration with formation of undesired metal powders is prevented by the presence of ammonium stabilizers. These synthesized nanoparticles were characterized by UV–Visible, XRD, SEM–EDS and TEM analysis techniques. These synthesized nanoparticles of TiO2 were tested as heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyran derivative using three components reaction of aromatic aldehyde, dimedione and malononitrile by simply stirring at room temperature in a solvent free condition.  相似文献   

12.
《印度化学会志》2023,100(8):101069
This study focuses on the microwave-assisted synthesis of Cr2O3 nanoparticles for the development of antibacterial materials. Characterization techniques including FT-IR spectroscopy, UV–vis spectroscopy, SEM-EDX, and XRD, were employed to analyze the nanoparticles' properties. The antibacterial efficacy against E. coli, S. aureus, B. subtilis, and P. aeruginosa was evaluated, with significant activity observed against all pathogens, highlighting their potential as antibacterial materials. The novelty of this study lies in the synthesis of Cr2O3 nanoparticles and their application as potent antibacterial agents against various pathogens. The results of XRD study concludes the average size of Cr2O3 nanoparticles as 49.96 nm. The synthesized Cr2O3 nanoparticles demonstrated a good zone of inhibition against E. coli (22 mm), S. aureus (19 mm), B. subtilis (18 mm), and P. aeruginosa (21 mm). The findings of the study suggest that Cr2O3NPs have potential as a novel antibacterial agent, and further research in this area could lead to the development of new and effective treatments for bacterial infections.  相似文献   

13.
In the present work, we report the photochemical synthesis of gold nanoparticles in N,N′-dimethylformamide by addition of a photocatalyst like thiourea-modified polyoxometalate (γ-SiW12O40). The polyoxometalate behaves as an electron relay. Reduction of the polyoxometalate takes place under UV irradiation followed by a transfer of electrons to the gold ions, leading to the formation of gold nanoparticles. The formation of the gold particles was monitored with time by UV–Vis spectrophotometry. The polyoxometalate also acts as a stabilizing agent and helps in controlling the size of the nanoparticles. The shape and size distribution was obtained from transmission electron microscopy studies. Spherical and monodisperse gold nanoparticles of ~10 nm size were obtained.  相似文献   

14.
EtOAc-dispersed magnetic nanoparticles (DMNPs) of γ-Fe2O3 represent a straightforward and green catalyst for the rapid three-component synthesis of 5-oxo-2-thioxo-3-thiophenecarboxylate derivatives as rhodanine skeletons via a single-pot domino process. The rhodanines were prepared over magnetic nanoparticles of γ-Fe2O3 without any salt or additives. Dispersed nano-γ-Fe2O3 have many advantages, such as stability in air, reusability, reactions with high efficiency, simple separation with magnetic external field from mixture reactions, chemical stability, and also low toxicity.  相似文献   

15.
Metal oxide nanoparticles synthesized by the biological method represent the most recent research in nanotechnology. This study reports the rapid and ecofriendly approach for the synthesis of CeO2 nanoparticles mediated using the Abelmoschus esculentus extract. The medicinal plant extract acts as both a reducing and stabilizing agent. The characterization of CeO2 NPs was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The in vitro cytotoxicity of green synthesized CeO2 was assessed against cervical cancerous cells (HeLa). The exposure of CeO2 to HeLa cells at 10–125 µg/mL caused a loss in cellular viability against cervical cancerous cells in a dose-dependent manner. The antibacterial activity of the CeO2 was assessed against S. aureus and K. pneumonia. A significant improvement in wound-healing progression was observed when cerium oxide nanoparticles were incorporated into the chitosan hydrogel membrane as a wound dressing.  相似文献   

16.
Here, biogenic synthesis of Fe2O3@SiO2 nanoparticles using fruit extract of Zanthoxylum rhetsa is reported. The SiO2 nanoparticles was synthesized using paddy straw which is a byproduct obtained in cultivation of rice. The composite was characterised by spectroscopic method like XRD, SEM, TEM and EDX analysis. The ipso-hydroxylation reactions were carried out with excellent yield within a moderate time period with mild reaction condition in all cases. Therefore, this approach may be considered as simple, easy, cheap and greener, environment friendly protocol for ipso-hydroxylation of arylboronic acids at 50 °C temperature.  相似文献   

17.
Mn3O4 Hausmanite nanoparticles were prepared in aqueous solution by using metallic salt and hydrazine as precursor and reducing agent, respectively. The crystallite sizes ranged from 10 to 20 nm and the particle diameter distribution was very narrow and estimated between 20 and 30 nm. Influence of some parameters such as temperature, time of reaction, surfactant nature was studied for a synthesis in an aqueous medium. The as-made manganese oxides particles could be dispersed in an organic solvent containing stabilizing agents, according to perform the synthesis in an H2O/n-hexan two-phase medium. These nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, scanning and transmission electron microscopies and nitrogen absorption measurements.  相似文献   

18.
A simple, facile and efficient method has been developed for the Friedel–Crafts benzoylation of arenes using magnetic γ-Fe2O3 nanoparticles under solvent-free sonication. The γ-Fe2O3 nanoparticles were used as an efficient and magnetically recoverable catalyst for the synthesis of aromatic ketones in good to excellent yields at room temperature under solvent-free. The reaction occurred with high regioselectivity under mild condition. The magnetic γ-Fe2O3 nanoparticles are economically synthesized in large-scale, easily separated from the reaction mixture by an external magnet and able to be reused several times without significant loss of the catalytic performance, which make them easy application to industrial processes.  相似文献   

19.
The results of investigation into the synthesis conditions and basic characteristics of nanoparticles of titanium dioxide and the mixed oxide (TiO2)x(SiO2)1?x from a gaseous mixture of oxygen, hydrogen, and titanium tetrachloride (or a mixture of titanium and silicon tetrachlorides) are reported. The synthesis was initiated by a pulsed electron beam and was a chain process in character. The geometric dimensions of oxide particles were measured and their X-ray diffraction, X-ray fluorescence, and IR spectrometric studies were performed. It was shown that the nonequilibrium character of the synthesis process induced by a pulsed electron beam allowed the temperature threshold for the formation of the crystalline structure of particles to be lowered.  相似文献   

20.
Green synthesis of nanoparticles has gained tremendous attention in recent era which is pertinent to their unique properties and broad applications. This approach is cost-effective, environment-friendly as well as highly biocompatible. In this research, chromium oxide nanoparticles (Cr2O3-NPs) were synthesized by using Apis mellifera honey as a reducing and capping agent and their anti-bacterial, anti-biofilm, anti-oxidant and anti-inflammatory abilities were explored. Ultra Violet-visible double beam spectroscopy revealed that chromium underwent d-d transition during synthesis of nanoparticles. X-ray diffraction (XRD) analysis verified that Cr2O3-NPs were crystalline in nature and average crystal size was 24 nm. Energy-dispersive X-ray (EDX) analysis confirmed that chromium and oxygen formed nano-composites in solution which possessed a stable form. Scanning electron microscopy (SEM) provided morphological characteristics of nanoparticles and proved that their average size was 20 nm. Cr2O3-NPs displayed excellent anti-bacterial activity (minimum inhibition zone, 20 mm; maximum inhibition zone, 26 mm) against 30 selected clinical isolates of Klebsiella pneumoniae as determined by agar well-diffusion method. Their antibacterial activity was considerably superior to that of three selected antibiotics including Gentamicin, Ciprofloxacin and Cefepime. However, no synergism was observed between nanoparticles and these antibiotics as calculated from fractional inhibitory concentration index (FICI) values all of which were  > 1. The synthesized nanoparticles possessed good biofilm inhibition potential (60 % to 73 %) at all concentrations (20 µg/ml to 50 µg/ml) tested. Cr2O3-NPs exhibited excellent anti-oxidant activity (IC50 = 128 µg/ml) which was nearly equivalent to that of ascorbic acid. Anti-inflammatory effect of Cr2O3-NPs was also significant (IC50 = 549 µg/ml) and comparable to that of standard. Both anti-oxidant and anti-inflammatory capacities were found to increase with an increase in the concentration of Cr2O3-NPs. In conclusion, this work revealed that Apis mellifera honey-mediated synthesis of Cr2O3-NPs could be investigated for future biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号