首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on wide-angle X-ray scattering measurements along the smectic-A to chiral ferroelectric smectic-C* phase transition of the liquid crystal SCE9 and its mixture with maghemite magnetic nanoparticles of typical dimension 20 nm. The temperature profiles of the tilt angle are fitted by an extended mean-field model. Neither pre-transitional order effects nor variations in the SmA layer thickness are observed, indicating a rather negligible influence of these nanoparticles upon the molecular orientation at the smectic-A to smectic-C* phase transition of SCE9. These results are very different from what was observed for smaller CdSe nanoparticles (3.5 nm) where both a dilation of the smectic layers in the SmA phase and a crossover behaviour for the smectic-A to smectic-C* transition away from tricriticality have been observed for analogous concentrations.  相似文献   

2.
Water-soluble, nonionic cellulose-based fibers were prepared from aqueous hydroxypropyl cellulose gels of 5–13-μm diameter by using a high-speed rotary spinning technique. A combination of texture analysis and viscosity measurement was applied to determine the optimum concentration of hydroxypropyl cellulose gels for fiber formation. The examined concentration range of hydroxypropyl cellulose gels was 38–52 % w/w. The textural properties including the adhesiveness of gels of different concentrations were determined based on the load-distance and load-time curves, while the obtained fiber formation was visually observed with an optical microscope. The texture analysis method enabled the determination of the optimum gel concentration from the point of fiber formation. An unequivocal correlation was determined between the adhesiveness of gels and their fiber-forming ability. The adhesiveness has a local minimum where the productivity of the fiber formation process and the micromorphology of the emitted fibers are optimal. Statistical analysis of the distribution of fiber diameters confirmed that in case of the optimum concentration, the distribution approaches normality. Mechanical properties of the prepared fibers were also evaluated using texture analysis, which indicated that the fibers made of gels of the suggested optimum concentration had the most desirable elastic behavior. An optimum concentration range of hydroxypropyl cellulose exists that enables fiber formation with the required characteristics from the point of further pharmaceutical formulation processing.  相似文献   

3.
The one-step synthesis of water-soluble composites from maghemite (γ-Fe2O3) nanoparticles with a diameter of 12 ± 4 nm and a biocompatible polysaccharide, namely, sodium salt of carboxymethyl cellulose, is described. The role of the polymer matrix consists in stabilization of the resulting nanoparticles by the electrostatic interaction of polymer carboxyl groups with the surface atoms of iron in the (3+) oxidation state. The dissolution of the composites in water affords aggregatively stable dispersions responding to the external magnetic field. The content of the magnetic phase (iron oxide) in the formulation of the maghemite–carboxymethyl cellulose composite is defined by the ratio of components during the synthesis.  相似文献   

4.
Rod-like cellulose nanowhiskers and spherical cellulose nanoparticles were prepared from wood-pulp-derived cellulose powder by mechanical refining processes such as high-pressure homogenization (HPH) and ball-milling (BM). The nanowhiskers obtained by the HPH method were found to be 200–500 nm long and 11–16 nm wide. The diameters of the nanoparticles were in the range 40–200 nm, depending on the BM time, and were reduced to 25–50 nm after extra HPH. By adjusting the BM time, cellulose nanoparticles having different polymorphs with similar morphologies were prepared. The X-ray diffraction patterns revealed the recrystallization of cellulose I (1 h of BM time) or cellulose II (4–8 h of BM time) in ball-milled nanoparticles after water washing and solvent exchange treatments. The nanowhisker widths derived from the specific surface areas (SSA) by adsorption methods such as Congo red dye, nitrogen, and water vapor, sorptions were in agreement with those obtained from transmission electron microscopy and atomic force microscopy images. Similar SSA values were obtained for micro- and nano-scale cellulose materials using water vapor adsorption methods, and the SSAs of nanoparticles obtained by different adsorption methods are also discussed.  相似文献   

5.
We fabricated self-standing films of cellulose nanocrystals (CNC) and electrospun composite fibers with CNC and polyvinyl alcohol both with magnetic properties arising from cobalt iron oxide nanoparticles in the CNC matrix. Aqueous dispersions of cobalt-iron oxide nanoparticles (10–80 nm diameter) and CNCs (ca. 150 nm length) were used as precursor systems for the films and composite fibers. The properties of the hybrid material were determined by electron and atomic force microscopy, X-ray diffraction, thermogravimetry and magnetometry. The CNC-inorganic system was ferromagnetic, with a saturation magnetization of ca. 20 emu g?1 of the magnetic phase. We demonstrate potential applications of the precursor dispersions, including magnetic fluid hyperthermia and highlight possible uses of the CNC-based magneto-responsive systems in biomedical and magneto-optical components.  相似文献   

6.
The effect of coating with nine different carboxylic acids (glycolic, propionic, lactic, malic, tartaric, citric, mandelic, caproic and caprylic) on nanostructured magnetite (D ~ 10 nm) was studied by Raman and photoacoustic, magnetic and 57Fe Mössbauer measurements. Mössbauer spectra of frozen suspensions showed dominantly magnetically split envelopes at lower temperatures, which were evaluated by hyperfine field distribution method. Mössbauer and Raman spectroscopy indicated similar variation of relative occurrence of magnetite and maghemite phases. These results are discussed on the basis of the hypothesis that different carboxylic acids can promote either the oxidation or reduction of iron oxide nanoparticles.  相似文献   

7.
Maghemite nanoparticles were synthesized by the coprecipitation method. Silica was coated to the maghemite nanoparticles and amino silane was modified to the surface of the silica magnetic nanoparticles. We use the biofunctional magnetic nanoparticles as a general agent to immobilize and separate the proteins in a broad range from different traditional Chinese medicines. The transmission electron microscopy results showed that the average diameter of the well-dispersed silica-coated nanoparticles was about 60 nm. The Fourier transform infrared spectrum indicated that the amino group had been successfully coupled to the surface of the maghemite particles. And the protein immobilization effect was characterized by the microplate reader. The characterization results proved that the synthesized functional magnetic nanoparticles could effectively immobilize and separate the proteins from traditional Chinese medicines.  相似文献   

8.
In this work, we introduce a modified novel silica sol–gel process to synthesize hexagonal close-packed (hcp) and face-centered cubic (fcc) nickel (Ni) nanoparticles supported on amorphous carbon and silica matrix. The supporting of amorphous carbon and silica can prevent the Ni nanoparticles from aggregating and being oxided which would result in the loss of their magnetism and dispersibility. The phase structure of the Ni nanoparticles which were obtained from the gels pyrolyzed from 250 to 350 °C is hcp structure, whereas that of the Ni nanoparticles pyrolyzed at 750 °C is fcc structure. The grain sizes of the hcp Ni nanoparticles calcined at 250 °C range from 5 to 20 nm in diameter, and that of the fcc Ni nanoparticles calcined at 750 °C range in 7–35 nm. The studies of magnetic properties of the hcp and fcc Ni nanoparticles show that both have quite different magnetic behaviors.  相似文献   

9.
Monoliths of iron oxide-silica aerogel nanocomposites have been synthesized using a novel synthesis route which consists of impregnating silica wet gels with anhydrous iron(II) precursors followed by ethanol supercritical drying of the gels. The process yields aerogels exhibiting high porosity, large surface areas (approximately 900 m2/g), rather low densities (approximately 0.6 g/cm3), and a homogeneous distribution of single-phase maghemite, gamma-Fe2O3, nanoparticles with average sizes in the 7-8 nm range. Remarkably, the gamma-Fe2O3 nanoparticles are obtained in the as-dried state without the need of postannealing. The nanoparticles are mostly superparamagnetic at room temperature but become blocked in a ferrimagnetic state at lower temperatures.  相似文献   

10.
The focus of this study has been to isolate cellulose microfibril aggregates by the one-time grinding treatment from wood, rice straw and potato tuber, and to compare their morphological and mechanical properties. Field emission scanning electron microscopy images showed that the diameter range of isolated microfibril aggregates from wood, 12–20 nm, was smaller than those from rice straw and potato tuber, 12–35 nm and 12–55 nm, respectively. These differences were observed even in the purified rice straws and potato tuber before the grinder treatment, but were hardly observed in the purified wood. The results of X-ray analysis and tensile tests indicated that there were no significant differences among the sources in the cellulose crystallinity and Young’s modulus of the isolated microfibril aggregates in the dry state. These results suggest that the inherent characteristics of cellulose microfibril aggregates in the dry state are very similar regardless of plant sources and tissue functions.  相似文献   

11.
A kind of cellulose magnetic nanoparticle with a core / shell structure has been prepared by ultrasonic irradiation. Cellulose acts as the shell while Fe3O4 magnetic nanoparticles take the role as the core. Magnetic force microscopy(MFM)with atomic force microscopy(AFM)measurement showed that the size of the magnetic nanoparticles is about 30-50 nm in diameter,while the Fe3O4 core is about 20-30 nm. FT-IR,XRD and MFM was used to provide the chemical and magnetic information of the nanoparticles. The MFM image showed that the nanoparticles separate very well with each other,indicating the cellulose shell produces a good prevention from the aggregation of the Fe3O4 particles. MFM studies also showed two magnetic nanoparticles can form particle-pairs,indicating a weak magneto-dipole interaction between magnetic nanoparticles. It is also found that the average sizes of magnetic nanoparticles have relation to the power of ultrasonic irradiation,and the possible mechanism is discussed.  相似文献   

12.
In this study, poly(N-isopropylacrylamide) (PNIPAAM) hydrogels were synthesized via a liquid template polymerization method using 200–400 nm polydimethylsiloxane (PDMS) droplets as the porogens, which were stabilized by sodium dodecyl sulfate (SDS). Similar hydrogels were also synthesized with iron (III) oxide superparamagnetic nanoparticles embedded within the gel. These gels were subjected to freeze- or air-drying, and then imaged using scanning electron microscopy. It was found that pores were not accessible from the surface of the freeze-dried gels, but were visible on the surface parallel to the crack plane within the polymer. In contrast, air-dried gels exhibited a well-defined nanoporous structure on the surface. The iron oxide nanoparticles did not have a significant effect on the hydrogel morphology.  相似文献   

13.
Novel organic–inorganic hybrid nanoparticles consisting of polymer–hydrogel nanoparticles (nanogels) and iron oxide were developed for potential biomedical applications. Hybrid nanoparticles were prepared by a simple procedure using polysaccharide nanogels as a reactive site for iron oxide formation. The hybrid nanoparticles have a narrow size distribution with a diameter of approximately 30 nm and show high colloidal stability. These nanohybrid particles could be used as a contrast medium for magnetic resonance imaging or for magnetic hyperthermia therapy.  相似文献   

14.
For more than 10 years epidermal cell layers from onion scales have been used as a model system to study the relationship between cellulose orientation, cell growth and tissue mechanics. To bring such analyses to the nanoscale, we have developed a procedure for preparing epidermal peels of onion scales for atomic force microscopy to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall, with minimal disturbance and under conditions very close to the native state of the cell wall. The oriented, multilayer distribution of cellulose microfibrils, approximately ~3 nm wide, is readily observed over extended lengths, along with other features such as the distribution of matrix substances between and on top of microfibrils. The microfibril orientation and alignment appear more dispersed in younger scales compared with older scales, consistent with reported values for mechanical and growth anisotropy of whole epidermal sheets. These results open the door to future work to relate cell wall structure at the nm scale with larger-scale tissue properties such as growth and mechanical behaviors and the action of cell wall loosening agents to induce creep of primary cell walls.  相似文献   

15.
In this research the synthesis of nanocrystalline iron oxides by laser ablation in pure water has been performed by two different wavelengths (first and second harmonics) of high frequency Nd:YAG laser. The obtained results from the X-ray diffraction and transmission electron microscopy analysis of the synthesized samples show the formation of spherical nanocrystalline magnetite with narrow particle size distribution and average diameters of 7 and 17 nm for the samples obtained by first and second harmonics of laser, respectively. According to the hysteresis loops measured by vibrating sample magnetometer, formation of the superparamagnetic nanoparticles (NPs) is confirmed. Investigating the magnetic properties of the two samples indicates a rise in the amount of magnetization of the sample produced by first harmonic of the laser compared to the one produced by the second harmonic wavelength. So it is obtained that the main wavelength of Nd:YAG laser (1,064 nm) results to finer iron oxide NPs with better magnetic properties.  相似文献   

16.
A new strategy relying on the use of a phosphate‐based macromonomer (PAM200) to modify the surface of iron oxide nanoparticles was developed for the synthesis of submicrometer polystyrene (PS) magnetic particles. First, iron oxide nanoparticles were synthesized using the coprecipitation of ferrous and ferric salts in alkaline medium. Besides the classical oleic acid (OA)/octane‐based ferrofluid, styrene‐based ferrofluids were elaborated with either OA or PAM200 as the stabilizer. In all cases, maghemite (γ‐Fe2O3) was clearly identified, with nanoparticles rather spherical in shape but exhibiting broad particle size distribution (PSD). Both OA and PAM200 led to stable maghemite‐based ferrofluids showing superparamagnetic properties. Further use of these ferrofluids in styrene miniemulsion polymerization resulted in inhomogeneous distribution of maghemite among and inside the polymer particles with OA‐based ferrofluids, whereas PAM200/styrene‐based ferrofluids led to magnetic particles with homogeneous distribution of maghemite inside PS particles. Broad PSD and small nonmagnetic particles were however observed. The true mechanisms operating in these systems are still to elucidate, but this study validates PAM200 as an efficient compatibilizing agent between hydrophilic maghemite and hydrophobic PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 327–340, 2008  相似文献   

17.
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.  相似文献   

18.
The paper presents a study regarding the preparation of 40 %MIIFe2O4/60 %SiO2 nanocomposites (M = Ni, Zn, Cu) by thermal decomposition of metal nitrates—poly(vinyl alcohol)–tetraethyl orthosilicate gels. Thermal analysis and FT-IR spectroscopy have evidenced that a redox reaction takes place between PVA and NO 3 ? ions in the pores of the formed hybrid gels. The result of this redox reaction is the formation of carboxylate-type coordination compounds that have the role of a precursor of the ferrite nanoparticles. By thermal decomposition of these precursors inside the silica matrix, the corresponding MFe2O4/SiO2 nanocomposites are obtained starting with 600 °C, as resulting from XRD analysis. Elemental maps of the corresponding involved elements M (Ni, Zn, Cu), Fe, and Si have confirmed the homogenous distribution of the ferrite nanoparticles within the silica matrix. TEM images have shown that the nanocomposites were obtained as fine nanoparticles, with diameter up to 20 nm. All nanocomposites 40 %MIIFe2O4/60 %SiO2 obtained at 1000 °C presented magnetic properties characteristic to this type of nanocomposite.  相似文献   

19.
The effect of silver nanoparticles (AgNPs) of diameters 6 and 100 nm on a discotic liquid crystalline material, namely 2,3,6,7,10,11-hexabutyloxytriphenylene (in short HAT4), has been observed in thermodynamic, electrical and optical texture studies. Silver nanoparticles (0.6 wt%) of diameter ~6 nm demonstrate a negligible (but ~100 nm shows appreciable) effect on the broad temperature range plastic columnar hexagonal (Colhex) phase (~65.0°C) of pure HAT4. The dielectric studies have been carried out in the frequency range of 10 Hz–35 MHz under homeotropic anchoring conditions of the molecules. In the low frequency region of pure HAT4 and its AgNP composites, a relaxation mode has been observed. AgNPs of 6 nm elevate the value of dielectric permittivity of the plastic columnar hexagonal phase of pure HAT4. The dc conductivity of pure HAT4 and its AgNP composite (6 and 100 nm) material has been determined. The optical band gap for pure and AgNP composites of HAT4 has been determined by the ultraviolet-visible study. Due to insertion of AgNPs, the optical band gap of HAT4 has reduced.  相似文献   

20.
Localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) has been used for biosensing and chemical sensing applications because the LSPR peak wavelength depends on the dispersion state and local refractive index of the surrounding medium. In this study, AuNP-loaded silica gels were prepared as sensing chips with high transparency and solution holding capability. The silica gels were prepared at various sintering temperatures from 500 to 900 °C, and the AuNPs precipitated in the gels by using a subsequent thermal reduction process. At sintering temperatures of 700, 800, and 900 °C, transparent and crack-free AuNP-loaded silica gels were obtained. Transmission electron microscopy observation revealed the AuNP size to be approximately 20 nm, and they were highly dispersed in all the silica gel samples. However, the sintering temperature of the silica gels strongly affected the LSPR property of the AuNPs and the porous property of the silica gel. The samples sintered at higher temperature exhibited a lower LSPR sensing ability against the refractive index of immersing solvents. The low sensing ability was considered as a result of a decrease in the contact area between the AuNPs and immersing solvent caused by an increase in the silica gel density with sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号