首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The UQCISD(T)/6-31g(d)//UB3LYP/6-31g(d) method and PCM solvation model were used to study the solvent effects on radical clock reactions. The solvents included cyclohexane, benzene, tetrahydrofuran, methylene chloride, acetone, methanol, acetonitrile, dimethylsulfoxide, nitromethane and water. We found very small solvent effects on the rearrangement activation free energy of cyclobutylmethyl and 1-hexen-6-yl radicals. Therefore, it is valid to use a calibrated radical clock in an unclear reaction medium because the speed of the radical clock should not change significantly by the solvent effect. In addition, we separated the solvent effects on radical rearrangement into three components, electrostatic, cavitation and dispersion/repulsion. We discussed the contribution of each component in detail.  相似文献   

2.
The UQCISD(T)/6-31g(d)//UB3LYP/6-31g(d) method and PCM solvation model were used to study the solvent effects on radical clock reactions. The solvents included cyclohexane, benzene, tetrahydrofuran, methylene chloride, acetone, methanol, acetonitrile, dimethylsulfoxide, nitromethane and water. We found very small solvent effects on the rearrangement activation free energy of cyclobutylmethyl and 1-hexen-6-yl radicals. Therefore, it is valid to use a calibrated radical clock in an unclear reaction medium because the speed of the radical clock should not change significantly by the solvent effect. In addition, we separated the solvent effects on radical rearrangement into three components, electrostatic, cavitation and dispersion/repulsion. We discussed the contribution of each component in detail.  相似文献   

3.
Kinetic solvent effects on peroxyl radical reactions are easily determined using a new peroxyester-based radical clock method.  相似文献   

4.
We examine solvent effects on carbon radical and ionic centers of HCXY by including a self-consistent reaction-field into the AM 1 and MNDO electronic structure models to mimic dielectric effects. We find that such concepts as merostability are principally solvent effects, and that, as expected, molecules with large dipoles or with charge assymmetry are stabilized more by solvent than those with atoms that are more electrically neutral. Of some importance in this study is the finding that conformation is also dependent on solvation and that change in geometry must be considered if an accurate estimate is to be made of energy differences such as those examined in the calculations of merostabilization.  相似文献   

5.
1H hyperfine (hf) coupling constants of semiquinone radical anions of 1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, and 2-methyl-3-phytyl-1,4-naphthoquinone in frozen alcoholic solutions were measured using pulse Q-band electron nuclear double resonance spectroscopy. The resolved signals of the quinone protons as well as from hydrogen bond and solvent shell protons were analyzed and assigned. Both in-plane and out-of-plane hydrogen bonding with respect to the pi-plane of the radical is observed. Interactions with nonexchangeable protons from the surrounding matrix are detected and assigned to solvent protons above and below the quinone plane. Density functional theory was used to calculate spin Hamiltonian parameters of the radical anions. Solvent molecules of the first solvent shell that provide hydrogen bonds to the quinones were included in the geometry optimization. The conductor-like screening model was employed to introduce additional effects of the solvent cage. From a comparison of the experimental and calculated hf tensors it is concluded that four solvent molecules are coordinated via hydrogen bonds to the quinone oxygens. For all radicals very good agreement between experimental and calculated data is observed. The influence of different substituents on the spin density distribution and hydrogen bond geometries is discussed.  相似文献   

6.
The photochemical reaction of 9-cyanophenanthrene and 2,3-dimethyl-2-butene, first reported by Mizuno, Pac and Sakurai, has been reinvestigated. The formation of a [2+2]-cycloadduct via a singlet exciplex is the exclusive reaction in the nonpolar solvents benzene and ethyl acetate. Photochemical behavior in polar solvents is far more complicated than previously reported. Mechanisms consistent with the effects of solvent polarity, methanol concentration, methanol deuteration, and light intensity upon product yields are proposed. Formation of a 9-cyanophenthrene anion radical and 2,3-dimethyl-2-butene cation radical is the primary photoinitiated process in polar solvent. The cation radical can undergo deprotonation to yield an allyl radical or nucleophilic attack by methanol to yield a methoxyalkyl radical. Covalent bonding of these radicals and the 9-cyanophenanthrene anion radical gives rise to the acyclic adducts obtained in polar solvents. The anion radical can also be protonated, leading ultimately to the formation of 9,10-dihydro-9-cyanophenanthrene.  相似文献   

7.
The activation energy for intramolecular electron transfer in radical anions of 2,7-dinitrodibenzodioxin and 2,8-dinitrodibenzodioxin, obtained by simulation of their temperature-dependent EPR spectra, are well predicted by the values calculated by the two-state Marcus-Hush model from the optical charge-transfer bands using quartic-adjusted energy surfaces. The electronic coupling is higher in the 2,8-dinitrodibenzodioxin (H(ab) = 485 cm(-1)) than in the 2,7-dinitrodibenzodioxin radical anion (H(ab) = 250 cm(-1)), but for each solvent the reorganization energy, taken as the maximum of the optical band, is only slightly higher in the latter. These values are consistent with the fact that the reaction is faster in the 2,8-dinitrodibenzodioxin radical anion isomer, as determined by EPR spectroscopy. The pre-exponential factors obtained combining the EPR-derived rate constants and the activation energies calculated from the optical bands fit well the theoretical (modified) nonadiabatic values in the less viscous solvents. However, for the more viscous solvents, the trend of the pre-exponential values with solvent can only be explained if dynamical solvent effects increasingly influence their value. The influence of solvent dynamics in the 2,8-dinitrodibenzodioxin radical anion starts in the less viscous solvents DMF and DMSO, but in the 2,7-dinitrodibenzodioxin isomer this is only fully evident for the more viscous PhCN and HMPA. The influence of solvent dynamics is higher in the radical with the lowest activation barrier.  相似文献   

8.
The one-electron reduction potential of the radical cations of thioanisole (1), benzyl methyl sulfide (2) and 2-hydroxyethyl benzyl sulfide (3) in water, formamide, acetonitrile, acetone, 1,1,1,3,3,3-hexafluoropropan-2-ol, methanol and 2-propanol was investigated by cyclic voltammetry. For comparison the one-electron reduction potentials in water were also measured using pulse radiolysis. The redox potential is strongly influenced by the nature of the solvent and the solvent sensitivity increases with charge localization. The present results have been used to evaluate solvent effects in view of the Kamlet-Taft relationship. The Kamlet-Taft expression quantitatively describes the solvent effects on the redox properties of 1-3 and gives the relative importance of the different solvent properties. The dominating contribution to the solvent effects is the solvent dipolarity/polarizability pi*, whereas alpha appears to be of minor importance. Furthermore, the relationship between the pi* and reduction potential of radical cations of 1-3 appear to be linear. It was also possible to find the same trend between the solvent dipole moment and peak potential of 1-3. These facts indicate that the nature of solvation is mainly nonspecific.  相似文献   

9.
Ordering of solvent molecules in the vicinity of a dipolar free radical affects its hyperfine coupling constants (hfcs). Specifically, it is demonstrated how the variation of the experimental methylene proton and muon hfcs of the muoniated cyclohexadienyl radical in several solvents and solvent mixtures of varying polarity can be accounted for by a dipole-dipole reaction field model that is based on the model of Reddoch and Konishi (J. Chem. Phys. 1979, 70, 2121) which was developed to explain the solvent dependence of the 14N hfc in the di-tert-butyl-nitroxide radical. Ab initio calculations were carried out with the cyclohexadienyl radical in an electric field to model the electric field arising from the electric dipole moments of the surrounding solvent molecules. An extension of the model that includes the dipole-quadrupole interaction can account for the larger hfc in benzene compared with that in octadecane, and it is predicted that the hfc will be proportional to the concentration of quadrupole moments to the 4/3 power. The influence of hydrogen bonding between the radicals' pi electrons and the OH groups of the solvent on the hfcs is also discussed. Comparison with gas-phase data permits a separation of vibrational effects and reveals that approximately 28% of the temperature dependence in water is due to increasing solvent disorder.  相似文献   

10.
[reaction: see text] A laser flash photolysis study has been carried out to assess solvent effects on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. The rearrangement rate constant k decreases by increasing solvent polarity and an excellent correlation with negative slope is obtained between log k and the solvent polarity parameter E(T)N. These evidences are in full agreement with the previous indication that the extent of internal charge separation decreases on going from the starting 1,1-diarylalkoxyl radical to the transition state.  相似文献   

11.
The contribution of entropic factors to the penultimate unit effect in free-radical copolymerizations is discussed and exemplified. In addition, significant penultimate unit effects on radical selectivity in transfer reactions are demonstrated and are shown to have a significant polar component. Further, ring-opening copolymerization studies are presented and describe surprising results that seem to originate from strong solvent effects in copolymerization. These results could not have been predicted with current knowledge, prior to the experiment. The present contribution demonstrates in detail that radical reactions are highly complex and there are significant dangers and drawbacks in employing simplified kinetic models when in search of fundamental understanding.  相似文献   

12.
Semiempirical molecular orbital theory has been used to study the effects of solvation by acetonitrile on the Stevens rearrangement of methylammonium formylmethylide to 2-aminopropanal. Three methods of solvation have been used to investigate both the electrostatic and specific solvent–solute effects of solvation: a supermolecule calculation involving the complete geometry optimization of up to six solvent molecules about the solute, the conductor-like screening model (COSMO) polarizable continuum method which allows for geometry optimization of the solute in a solvent defined by its dielectric constant, and a hybrid method in which up to five solvent molecules are incorporated inside the solute cavity and complete geometry optimization of the complex is carried out within the polarizable continuum. A comparison of the calculated geometries, rearrangement activation energies, and enthalpies of solvation from these approaches is presented, and the explicit versus bulk solvation effects are discussed. The overall effect of all methods for incorporating solvation effects is that the radical pair pathway is perferred over the concerted mechanism. © 1996 by John Wiley & Sons, Inc.  相似文献   

13.
Simple electron self-exchange reactions are often used to study the role of the reaction medium on a chemical process, commonly implying the use of various solvents with different physical properties. In principle, similar studies may be conducted using a single solvent, changing its physical properties by application of elevated pressures, but so far only little information is available on pressure dependent exchange reactions. In this work, we have used a recently constructed high pressure apparatus for use with electron spin resonance (ESR) spectroscopy to investigate simple electron self-exchange reactions involving 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and tetracyanoethylene (TCNE) and their respective radical anions as well as TMPPD and its radical cation in three different solvents. The self-exchange was observed by ESR line broadening experiments, yielding rate constants and volumes of activation. The experimental results were compared to theoretical calculations based on Marcus theory and taking into account solvent dynamic effects. The use of elevated pressures has enabled the study of solvent effects without commonly encountered problems like solubility issues or chemical reactions between solvent and solute which sometimes limit the range of useable solvents.  相似文献   

14.
Available data from various sources seem to indicate an important role of solvation in the cleavage rates of intermediate pi ion radicals, in the passage from concerted to stepwise electron-transfer/bond breaking reaction pathways and even in the very existence of pi ion radicals. After preliminary computations treating the solvent as dielectric continuum, these expectations are examined with the help of a simple model system involving the anion radical of ONCH(2)Cl and two molecules of water, which allows the application of advanced computational techniques and a treatment of these solvent effects that emphasizes the role of solvent molecules that sit close to the charge centers of the molecule. A pi ion radical minimum indeed appears upon introduction of the two water molecules, and cleavage is accompanied by their displacement toward the leaving anion, thus offering a qualitative mimicry of the experimental observations.  相似文献   

15.
Abstract— –By e.s.r. we have studied the photoexcitation of an aromatic amine to its triplet state at 77°K, its photoionization to a radical cation and the simultaneous formation of solvent radicals proceeding from the photosensitization of the organic glassy matrix. In the case of methanol and ethanol matrix we observe approximately one solvent radical per solute radical cation. In the case of isopropanol and methyltetrahydrofuran we find respectively three and two solvent radicals per solute radical cation. The results suggest two possible processes of photosensitization. By successive absorption of two photons, the amine reaches an excited triplet state which is able either to dissociate giving one electron and one cation radical or to transfer its energy to the solvent, this last being decomposed. It is assumed that in the case of methanol and ethanol, the radicals from the solvent are only formed by reaction on the matrix by the released electron, whereas in the case of isopropanol and methyltetrahydrofuran, the second process is prevalent or exclusive.  相似文献   

16.
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(?-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(?-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.  相似文献   

17.
Quantum chemical calculations have been carried out to understand better solvent effects on the isotropic muon and proton hyperfine coupling constants in the C6H6Mu radical. Both polarizable continuum solvent models and explicit inclusion of water molecules into supermolecular complexes were used. Changes in the hyperfine couplings of in-plane hydrogen atoms are very small and difficult to discuss, partly due to relatively large experimental error bars. In contrast, the out-of-plane proton and muon hyperfine couplings exhibit more pronounced changes. These are partly due to structural changes of the radical and partly due to direct electronic polarization effects. Polarizable continuum solvent models agree well with experimental changes for benzene but overshoot the enhancement of the hyperfine couplings for water. Explicit inclusion of water molecules reduces this overestimated spin density increase and thereby tends to bring theory and experiment into closer agreement. The enhancement of the spin density on the out-of-plane hydrogen or muon atoms by the solvent environment is mainly due to an increased polarization of the singly occupied MO towards this side. Electronic Supplementary Material: Supplementary material is available in the online version of this article at dx.doi.org/10.1007/s00214-005-0680-x  相似文献   

18.
《Tetrahedron letters》1987,28(37):4255-4258
The synthesis and rates of decomposition of bis(1,1-dimethyl-2-oxopropyl) diazene (2p) are described. A series of substituted azoalkanes is compared to four other systems measuring radical substituent effects. These correlations and a solvent polarity study indicate the lack of polar contributions in azo decompositions.  相似文献   

19.
Polymerization rates in radical polymerization of methyl methacrylate initiated by 2,2′-azobis(2,4-dimethyl valeronitrile) under various conditions were analyzed by using a previously derived simple equation. The results obtained are discussed on the basis of the relation of solvent viscosity and temperature. It is concluded that chain termination rate constant is inversely proportional to the solvent viscosity, but primary radical termination rate constant can not be related immediately to solvent viscosity.  相似文献   

20.
This review surveys both data obtained by the authors and published data on the partial or full hydrodehalogenation of di- and polyhalocyclopropanes (chlorides and bromides) with Grignard reagents catalyzed by titanium or zirconium compounds. The factors affecting the efficiency and selectivity of the hydrodebromination of bromocyclopropanes are considered: the nature of Grignard reagents (including isotopically labeled reagents), their transformations and effects in catalyzed and uncatalyzed reactions, the participation of solvents, catalytic and stoichiometric amounts of the catalyst, etc. A scheme is proposed in which the key steps of the mechanism of hydrodebromination of bromocyclopropanes includes three blocks of reactions: (a) the generation of a catalytically active Ti(II) species; (b) the hydrodehalogenation of bromocyclopropanes involving electron transfer from a low-valent catalyst species, formation of the cyclopropyl radical, and stabilization of this radical as a result of hydrogen atom transfer from the solvent molecule; and (c) transformations of previously formed radical species, such as dimerization and disproportionation (for example, of radical species generated from Grignard reagents or ether molecules) or the linking of alkyl radicals to radical species produced from solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号