首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Experimental observations of the heat generation rate at which a porous bed dries out have been made for bed particle sizes ranging from 245 to 4,783 microns in beds up to 40 cm deep with different coolants. The governing mechanisms are identified and used to develop models of the observed phenomena.  相似文献   

3.
Experimental observations of the heat generation rate at which a porous bed dries out have been made for bed particle sizes ranging from 245 to 4,783 microns in beds up to 40 cm deep with different coolants. The governing mechanisms are identified and used to develop models of the observed phenomena.  相似文献   

4.
Various ways of determining the surface porosity, the relation between the porosity and the surface porosity and the representation of the permeability in terms of the characteristics of the microstructure of the porous medium are analyzed with reference to model porous media with a periodic microstructure. It is shown that it is necessary to distinguish between the geometric (scalar) and physical (tensor) suface porosities and that the geometric surface porosity, the physical surface porosity and the porosity are different characteristics of the porous medium.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 79–85, January–February, 1995.  相似文献   

5.
The flow past a nonuniform porous spherical particle immersed in a uniform steady-state stream is studied in the Stokes approximation. For a power-law radial dependence of the particle permeability coefficient, an analytical solution for the velocity and pressure fields outside and inside the particle is obtained. Volgograd, Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 179–184, January–February, 2000.  相似文献   

6.
I. S. Klein 《Fluid Dynamics》1978,13(4):606-609
Natural convection in a vertical porous bed heated from the side was investigated numerically for the case where mass transfer occurs between the bed and the surroundings. On the permeable part of the boundary we assign conditions of the first or second kind for the pressure, which corresponds to a free surface or a thin permeable skin. We obtained information about the structure and regimes of steady convection in the bed and the dependences of the mean and local heat-transfer characteristics on the Rayleigh number. The results are compared with the results of [1–3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 145–148, July–August, 1978.The author thanks V. I. Polezhaev for supervision of the work.  相似文献   

7.
The head-on collision of a combustion front with a closely packed bed of ceramic-oxide spheres was investigated in a vertical 76.2 mm diameter tube containing a nitrogen diluted stoichiometric ethylene–oxygen mixture. A layer of spherical beads in the diameter range of 3–12.7 mm was placed at the bottom of the tube and a flame was ignited at the top endplate. Four orifice plates spaced at one tube diameter were placed at the ignition end of the tube in order to accelerate the flame to either a “fast-flame” or a detonation wave before the bead layer face. The mixture reactivity was adjusted by varying the initial mixture pressure between 10 and 100 kPa absolute. The pressure before and within the bead layer was measured by flush wall-mounted pressure transducers. For initial pressures where a fast-flame interacts with the bead layer peak pressures recorded at the bead layer face were as high as five times the reflected Chapman–Jouget detonation pressure. The explosion resulting from the interaction developed by two distinct mechanisms; one due to the shock reflection off the bead layer face, and the other due to shock transmission and mixing of burned and unburned gas inside the bead layer. The measured explosion delay time (time after shock reflection from the bead layer face) was found to be independent of the incident shock velocity. As a result, the explosion initiation is not the direct result of the shock reflection process but instead is more likely due to the interaction of the reflected shock wave and the trailing flame. The bead layer was found to be very effective in attenuating the explosion front transmitted through the bead layer and thus isolating the tube endplate. This paper is based on work that was presented at the 21th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

8.
The nonsteady-state motion of a conducting and optically transparent gas separated from a rarefied stationary medium by a front S which passes through the zone of a nonuniform magnetic field is considered. Boundary conditions at S are proposed for several interaction mechanisms of S with the rarefied medium. Solutions are obtained in linear approximation. The solutions of a general system of equations are found by means of numerical methods. The sharply nonmonotonic nature of the motion of S in the nonuniform magnetic field is established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 156–162, July–August, 1973.In conclusion, the author thanks A. B. Vatazhin for useful discussions.  相似文献   

9.
10.
11.
This work investigates the pressure amplification experienced behind a rigid, porous barrier that is exposed to a planar shock. Numerical simulations are performed in two dimensions using the full Navier–Stokes equations for a M = 1.3 incoming shock wave. An array of cylinders is positioned at some distance from a solid wall and the shock wave is allowed to propagate past the barrier and reflect off the wall. Pressure at the wall is recorded and the flowfield is examined using numerical schlieren images. This work is intended to provide insight into the interaction of a shock wave with a cloth barrier shielding a solid boundary, and therefore the Reynolds number is small (i.e., Re = 500 to 2000). Additionally, the effect of porosity of the barrier is examined. While the pressure plots display no distinct trend based on Reynolds number, the porosity has a marked effect on the flowfield structure and endwall pressure, with the pressure increasing as porosity decreases until a maximum value is reached.   相似文献   

12.
13.
The instability of a plane front between two phases of the same fluid (steam and water) in a porous medium is considered. The configuration is taken to be initially stationary with the more dense phase overlying the less dense phase. The frontal region is assumed sharp, so that macroscopic boundary conditions can be utilized. This assumption precludes the existence of dispersion instabilities. The stabilizing influence of phrase transition as well as the implication of different macroscopic pressure boundary conditions on the stability of the front are discussed and illustrated.  相似文献   

14.
15.
Stochastic generalized porous media equation with jump is considered. The aim is to show the moment exponential stability and the almost certain exponential stability of the stochastic equation.  相似文献   

16.
The onset of convection in a rarefield gas saturating a horizontal layer of a porous medium has been investigated using both Darcy and Brinkman models. It is assumed that due to rarefaction both velocity slip and temperature jump exist at the boundaries. The results show that (i) when the degree of rarefaction increases the critical Rayleigh number as well as the critical wave number for the onset of convection increases, (ii) stabilizing effect of temperature jump is more than that of velocity slip, (iii) Darcy model is seen to be the most stable one when compared to Brinkman model or the pure gaseous layer (i.e. in the absence of porous medium).  相似文献   

17.
18.
We examine the problem of planar one-dimensional motion of a strong shock wave with moving internal boundary in which the initial position of the front, its intensity, the mass of the gas involved in the motion, and the energy contained in this gas are known. The problem is not self-similar and its exact solution, which involves working with partial differential equations, presents serious difficulties. In the following we determine the law of shock-front motion in this problem via the method of [1], which makes it possible to find a system of ordinary differential equations for the problem. The method is based on an initial specification of the power-law coupling between the dimensionless Lagrangian and Eulerian variables and replacement of the energy equation by this coupling and the energy integral. The solution is sought in the first approximation.  相似文献   

19.
Continuous gas-solid separation fluidized beds are one of the most widely used practical operation units for the dry separation of coal in China,particularly in...  相似文献   

20.
The waves induced by a moving dipole in a twofluid system are analytically and experimentally investigated.The velocity potential of a dipole moving horizontally in the lower layer of a two-layer fluid with finite depth is derived by superposing Green‘s functions of sources (or sinks). The far-field waves are studied by using the method of stationary phase. The effects of two resulting modes, i.e. the surfaceand internal-wave modes, on both the surface divergence field and the interfacial elevation are analyzed. A laboratory study on the internal waves generated by a moving sphere in a two-layer fluid is conducted in a towing tank under the same conditions as in the theoretical approach. The qualitative consistency between the present theory and the laboratory study is examined and confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号