首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through fine tuning of synthesis conditions, we successfully synthesized three types of carbon nanofiber (CNF) (herring-bone carbon nanofiber, platelet carbon nanofiber, and cup-stacked carbon nanofiber) by the thermal decomposition of a mixture of poly(ethylene glycol) (PEG) and nickel chloride (NiCl2). A series of experimental results demonstrated that the key factors for the selective synthesis of these CNFs were the (1) NiCl2/PEG ratio, (2) drying time of the polymeric mixture, (3) state of PEG (liquid or solid) before temperature rising, and (4) temperature profile during the thermal decomposition. Changes in these conditions contributed to the formation of Ni catalyst particles from the catalyst NiCl2 with different morphology, thereby resulting in the growth of different types of CNF or amorphous carbon products according to the catalyst particle’s shape. Also, we found that the mechanism of CNF growth in this synthesis method was fundamentally the same as that in chemical vapor deposition (CVD).  相似文献   

2.
Biodegradable star-shaped copolymers comprised of four-arm poly(ethylene glycol) (4-arm PEG) and poly(β-amino ester) (PAE) were synthesized by conjugating PAE to 4-arm PEG. The synthesized copolymers were characterized by 1H and 13C NMR and gel permeation chromatography. The PAE showed pH/temperature-sensitive properties in an aqueous solution. The copolymer solutions (30 wt.%) showed a gel-to-sol phase transition as a function of temperature in the pH range 7.2–7.8. The gel window covers the physiological conditions (37 °C and pH 7.4) and can be controlled by varying the PAE block length, copolymer solution concentration and PEG molecular weight. After a subcutaneous injection of the copolymer solution into a SD rat, a gel formed rapidly in situ which remained for more than 2 weeks in the body. This copolymer is expected to be a potential candidate for biomedical applications.  相似文献   

3.
The solubility of naphthalene was investigated in aqueous solutions of triblock copolymers poly(ethylene glycol)–poly(propylene glycol)–poly(ethylene glycol) (PEG–PPG–PEG) and (2-hydroxypropyl)cyclodextrins. The results with solutions of the individual solubilizers were as expected: the solubility enhancement was much higher with a micelle-forming copolymer than with the non-micellizing one and with (2-hydroxypropyl)--cyclodextrin (HPBCD) than with (2-hydroxypropyl)--cyclodextrin (HPACD). Although the formation of inclusion complexes between HPACD and PEG and between HPBCD and PPG is well established, the naphthalene solubility in mixed solutions does not significantly deviate from that predicted for a mixture of independent solubilizers. Thus the interactions between HPCD and PEG–PPG–PEG copolymers are not strong enough to disrupt micelles and aggregates formed by those copolymers. In fact, slight synergetic deviations were observed with the micellizing copolymer, indicating the existence of ternary naphthalene/HPCD/copolymer interactions. For pharmaceutical applications, it is important that the solubilization efficacy of PEG–PPG–PEG copolymers and that of cyclodextrins modified by the 2-hydroxypropyl group would not be compromised if these two types of solubilizers were co-administered.  相似文献   

4.
Carboxymethylchitosan (CMC) hydrogels containing thermo-responsive poly(N-isopropylacrylamide) (poly(NIPAAm)) and pH-responsive poly(acrylic acid) (poly(AA)) were prepared via a free radical polymerization in the presence of hexamethylene-1,6-di-(aminocarboxysulfonate) crosslinking agents. A proper ratio of CMC to NIPAAm and AA used in the reaction was investigated such that the thermo- and pH-responsive properties of the hydrogels were obtained. Water swelling of the hydrogels was improved when the solution pH was in basic conditions (pH 10) or the temperature was below its lower critical solution temperature (LCST). Effects of the change in solution temperature and pH on water swelling properties of the hydrogel as well as the releasing rate of an entrapped drug were also investigated. The hydrogels were not toxic and showed antibacterial activity against Straphylococcus aureus (S. aureus). The pH- and thermo-responsive properties of this novel “smart” hydrogel might be efficiently used as dual triggering mechanisms in controlled drug release applications.  相似文献   

5.
New hydrogels based on polyethylene glycol (PEG) and poly(vinyl alcohol) (PVA) of different degrees of hydrolysis were synthesized. To form the network the PEG was modified at their ends with acyl chloride groups to be used as the crosslinking agent. The compositions of the hydrogels were between 50% and 90% by weight of PEG and PVA of various degrees of hydrolysis were used. It was found that the degree of hydrolysis of the PVA and the PEG content influence the equilibrium water content of the hydrogel. The process of swelling of all the hydrogels prepared followed a second-order kinetics.  相似文献   

6.
The aqueous solutions of poly(e-caprolactone-co-lactide)-poly(ethylene glycol)poly(e-caprolactone-co-lactide) undergoing sol-gel transition as the temperature increases from 20 to 50℃were successfully prepared. The thermogelling triblock copolymers were synthesized by subtle tuning of the chemical composition and the hydrophilicity/hydrophobicity balance. The sol-gel transition was studied focusing on structure-property relationship. The amphiphilic copolymer formed micelles in aqueous solutions. It is believed to have potential applications in drug delivery and tissue engineering.  相似文献   

7.
Novel supramolecular hydrogels were formed between pyrene-terminated poly(ethylene glycol) star polymers and γ-cyclodextrin (γ-CD), through the inclusion complexation of dimers of the pyrene terminals with γ-CD, where γ-CD was directly used as a supramolecular cross-linking reagent without any modification.  相似文献   

8.
Poly(?-caprolactone)-b-poly(ethylene glycol)-b-poly(?-caprolactone) (PCL-b-PEG-b-PCL) triblock copolymer were synthesized by mean anionic activation of the hydroxyl end groups of poly(ethylene glycol) in presence of diphenylmethylsodium. Copolymers were characterized by SEC, FT-IR and 1H-NMR spectroscopy, TGA and DSC. Size exclusion chromatographic analysis of obtained copolymers indicated incorporation of CL monomer into PEG without formation of PCL homopolymer. Characterization by FT-IR and 1H NMR spectroscopy of the resulting polymeric products, with respect to their structure, end-groups and composition, showed that they are best described as ester-ether-ester triblock copolymers, whose compositions can be adjusted changing the feeding molar ratio of PEG to CL. The thermal stability of triblock copolymers was less that PEG precursor, but higher that PCL homopolymer. Analysis by mean DSC showed that all copolymers were semi-crystalline and their thermal behavior depending on their composition.  相似文献   

9.
 We have applied the PFG NMR technique to investigate the translational mobility in the PVP-PEG system as a function of composition and temperature at the stages of PVP-PEG complex formation, its swelling, and dissolution in excess of liquid PEG. It has been found that the variations of the spin-echo attenuation with PEG content, water amount, and temperature reflect the different stages. The first two stages are characterized by a distribution of the self-diffusion coefficients of PEG involved in the network. The dissolution shows two diffusion coefficients; the fast one is attributed to PEG molecules, the slow one to the associates of PEG and PVP. The temperature dependencies can be described by an Arrhenius law with an activation energy depending on the composition of the blend. The concentration dependence of the PEG self-diffusion coefficients in the blend occurred to be independent of the molecular weight of PVP. The results are discussed in terms of the Mackie-Meares model. Received: 23 August 2000 Accepted: 19 October 2000  相似文献   

10.
Functional star-shaped 4-arm poly(ethylene glycol)-b-poly[(ε-caprolactone-co-γ-amino-ε-caprolactone)] (4-arm PEG-b-P(CL-co-ACL) was synthesized through ring-opening polymerization. The structure of the copolymer was confirmed by 1H NMR, Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). To further understand the copolymers, the difference of the conversion rate between ε-caprolactone (CL) and γ-(carbamic acid benzyl ester)-ε-caprolactone (CABCL) and the detailed deprotection condition were studied. The thermal property of the copolymer was analyzed by WAXR and differential scanning calorimetry (DSC), which demonstrated that the thermal property could be well adjusted. The pH-responsive behavior of the copolymers was studied in detail by dynamic light scattering (DLS), pH titration, and pyrene fluorescence methods, which indicated that it could form micelles and exhibit pH responsibility. Moreover, the copolymer was nontoxic and had good biocompatibility according to the results by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay.  相似文献   

11.
A series of triblock copolymers composed of poly(ethylene glycol) (PEG) and poly(β-amino ester urethane) (PAEU) was synthesized and characterized. Its aqueous solution can be used as a non-cytotoxic, biodegradable, and pH/temperature-sensitive hydrogel system. The copolymer solutions exhibited sol-to-gel and gel-to-sol transitions with increasing pH and temperature, respectively. The properties of this hydrogel system, such as its sol–gel transition diagram, mechanical properties, and degradation rate, can be controlled by modulating the PEG molecular weight, PAEU block length, copolymer concentration, or structure of the monomers. The presence of urethane groups and ionized tertiary amine groups in the copolymer solution at lightly acidic pH may lead to a strong interaction of the copolymer with formulated bioactive therapeutic agents, while the existence of the gel state under physiological conditions (37 °C, pH 7.4) may enable this copolymer hydrogel to be applicable as a drug/protein carrier.  相似文献   

12.
In this work, a novel biodegradable pH-sensitive hydrogel based on poly(?-caprolactone) (PCL), methoxpoly(ethylene glycol) (MPEG) and methacrylic acid (MAA) was prepared by UV-initiated free radical polymerization. The resulting macromonomers and hydrogels were characterized by FTIR and/or 1H NMR. Swelling behaviour and pH sensitivity of the hydrogels were studied in detail. With increase in pH of aqueous medium from 1.2 to 7.2, swelling ratio of the hydrogels increased accordingly. The hydrolytic degradation behaviour was also investigated. The prepared biodegradable pH-sensitive hydrogel based on PCL, MPEG, and MAA might have great potential application in smart drug delivery system.  相似文献   

13.
We measured the temperature change in strips of poly(dimethylsiloxane) (PDMS) and ethylene–propylene rubbers that occurred as they were stretched and allowed to shrink by a factor of 3.5–4.5, along with the tensile force that effected the deformation. Main results obtained are as follows: (1) the temperature change is fully reversible in E–P rubber and slightly but definitely irreversible in PDMS rubber. The temperature rise in the latter on stretching is larger than the fall on shrinking by ca. 20 %. (2) The reversible part of heat that evolves from or is absorbed by PDMS rubber is smaller than, but close to, the mechanical energy expended. For E–P rubber, the heat generated greatly exceeds the expended mechanical energy. (3) The entropy of extension as a function of extension is reproduced well by Wang and Guth calculation for PDMS rubber, but not for E–P rubber.  相似文献   

14.
Biodegradable methoxy poly(ethylene glycol)-b-poly(d,l-lactide) (MPEG-b-PDLL) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG-b-PCL) diblock copolymers were synthesized by ring-opening polymerization of DLL and CL monomers in bulk using stannous octoate, and MPEG as the initiating system. Surfactant-free MPEG-b-PDLL/MPEG-b-PCL blend nanoparticles were prepared by the nanoprecipitation method. The influences of block length and blend ratio on morphology, average size, and thermal properties of the blend nanoparticles were determined. The blend nanoparticles were spherical in shape. The average particle sizes slightly decreased as the MPEG-b-PCL blend ratio increased. 1H-NMR and thermogravimetry revealed the different MPEG-b-PDLL/MPEG-b-PCL blend ratios of the nanoparticles. Differential scanning calorimetry showed that the MPEG-b-PCL crystallinity steadily decreased as the MPEG-b-PDLL blend ratio increased, suggesting miscible blending between the MPEG-b-PDLL and MPEG-b-PCL in the amorphous phase of the nanoparticle matrix.  相似文献   

15.
Composite membranes prepared from poly(vinyl alcohol) and poly(sulfone) were crosslinked with trimesoyl chloride (TMC) solutions. The degree of crosslinking, crystallinity, surface roughness and hydrophobicity of the crosslinked PVA–PSf membranes were determined from attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements, respectively. Results showed a consistent trend of changes in the physicochemical properties: the degree of crosslinking, crystallinity, surface roughness, hydrophobicity and swelling degree all decrease with increasing crosslinking agent (TMC) concentration and reaction time. The crosslinked membrane performance was assessed with pervaporation dehydration of ethylene glycol solutions at a range of concentrations (30–90 wt% EG) in the feed mixtures. The total flux of permeation was found to decrease, while the selectivity to increase, with increasing TMC concentration and reaction time. The decrease in flux was most prominent at low EG concentrations in the feed mixtures. In addition, the temperature effect on the pervaporation dehydration was investigated in relation to solution–diffusion mechanisms.  相似文献   

16.
This paper presents a computational study on the formation of a molecular necklace formed by specific threading of cyclodextrins (CDs) on block copolymers. Structural as well as energetic principles for the selective complexation of - and -cyclodextrin with poly(ethylene oxide)–poly(propylene oxide) block copolymers (PEO–PPO) are elucidated considering a diblock copolymer of equimolecular composition (PEO)4–(PPO)4 as guest. A non-statistical distribution of CDs, i.e. -CDs primarily located on the PEO chain and -CDs on PPO blocks of the polymer, is based on a variety of structural features and energetic preferences considering both potential as well as solvation energies. This selectivity becomes already obvious considering 1:1 complexes between PEO and PPO monomers and the two CDs, but is increasingly evident when calculating higher order ensembles. Besides the host–guest interaction, docking between CDs themselves is an important, also non-statistical, prerequisite for the self-assembly of highly ordered tubes. The formation of intermolecular hydrogen bonds between adjacent CDs in a tubular aggregate gives an important contribution to the overall stability of the molecular necklace. The net effect, based on the preferential interaction between host and guest as well as between the host molecules themselves, results in the formation of a stable, highly ordered macromolecular, multicomponent aggregate.  相似文献   

17.
We recently discovered that poly(aspartate) (PAA) hydrolase‐1 from Pedobacter sp. KP‐2 has a unique property of specifically cleaving the amide bond between β‐aspartate units in thermally synthesized PAA (tPAA). In the present study, the enzymatic synthesis of poly(α‐ethyl β‐aspartate) (β‐PAA) was performed by taking advantage of the substrate specificity of PAA hydrolase‐1. No polymerization of diethyl L ‐aspartate by native PAA hydrolase‐1 occurred because of the low dispersibility of the enzyme in organic solvent. Poly(ethylene glycol) (PEG) modification of the enzyme improved its dispersibility and enabled it to polymerize the monomer substrate. MALDI‐TOF MS analysis showed that the synthesized polymer was observed in the range of m/z = 750–2 500. This analysis also revealed that the polymer was composed of ethyl aspartate units, containing either an ethyl ester or a free carboxyl end group at its carboxyl terminus. 1H NMR analysis demonstrated that the synthesized polymer consisted of only β‐amide linkages. Thus, the present results indicate that PAA hydrolase‐1 modified with PEG is useful for the synthesis of β‐PAA due to its unique substrate specificity and good dispersibility in organic solvent.

  相似文献   


18.
A series of novel water soluble β-cyclodextrin (βCD) polymers has been synthesized from functionalized poly(ethylene glycol) (PEG). The chemical composition of the polymers has been characterized by 1H NMR and the βCD content is found to be between 48 and 33% (w/w). The molecular weight has been determined by Size Exclusion Chromatography (SEC) and depends on the ratio between βCD and PEG, varying from 2.1 × 104 to 8.6 × 104 g mol?1. The physico chemical properties have been characterized by differential scanning calorimetry (DSC), viscometry and isothermal titration calorimetry (ITC). ITC shows that the polymers have association constants comparable to βCD with different guest molecules, indicating a good accessibility of the CDs.  相似文献   

19.
The thermal degradation kinetics of several ethylene–propylene copolymers (EPM) and ethylene–propylene–diene terpolymers (EPDM), with different chemical compositions, have been studied by means of the combined kinetic analysis. Until now, attempts to establish the kinetic model for the process have been unsuccessful and previous reports suggest that a model other than a conventional nth order might be responsible. Here, a random scission kinetic model, based on the breakage and evaporation of cleavaged fragments, is found to describe the degradation of all compositions studied. The suitability of the kinetic parameters resulting from the analysis has been asserted by successfully reconstructing the experimental curves. Additionally, it has been shown that the activation energy for the pyrolysis of the EPM copolymers decreases by increasing the propylene content. An explanation for this behavior is given. A low dependence of the EPDM chemical composition on the activation energy for the pyrolysis has been reported, although the thermal stability is influenced by the composition of the diene used.  相似文献   

20.
Binary blends based on poly(vinyl chloride) (PVC) were prepared both by casting from tetrahydrofuran (THF) and by mixing in the melt form, in a discontinuous mixer, PVC and multi-block copolymers containing poly(ϵ-caprolactone) (PCDT) and poly(ethylene glycol) (PEG) segments. PCDT-PEG copolymers were synthesized using a polycondensation reaction where the α,ω-bis-chloroformate of an oligomeric poly(ϵ-caprolactone) diol terminated (PCDT) and oligomeric PEG were employed as macromonomers. For comparison purposes, blends PVC with starting oligomers as well as with mixtures containing a typical low molecular plasticizer, dioctylphthalate (DOP), were also prepared. The copolymer miscibility was studied by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The blend morphology was investigated by polarized light microscopy (PLM). A higher miscibility with PVC was observed for copolymers compared to PEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号