首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solutions of α-cyclodextrin (αCD), β-cyclodextrin (βCD), and γ-cyclodextrin (γCD), i.e., cone shape oligomers of polysaccharide. For all CD molecules, two kinds of macroscopic patterns, outside and inner broad rings and spoke lines formed. Multi-broad rings were formed for βCD in the inner region of the main broad ring at the outside edge especially at the high concentrations. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of rod-like and/or sward-like crystals were observed mainly in the direction along the spoke lines. The microscopic patterns of βCD were similar to those of some of polysaccharides and polynucleotides the authors studied previously. α- and γ-cyclodextrins were slightly hygroscopic, and clear-cut drying patterns were not observed.  相似文献   

2.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous suspensions of similar sized aggregates of diamonds (CD1), which formed from the deionization of the pre-particles of diamond 4 nm in diameter. Two kinds of macroscopic patterns, i.e., outer and inner broad rings, and spoke lines were formed. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of very large dendritic aggregates from the CD1 particles were observed only when the excess amount of sodium chloride higher than 2 mM coexisted in the initial suspensions before dryness and further initial CD1 concentration is lower than 0.17 wt%.  相似文献   

3.
Macroscopic and microscopic patterns during the course of dryness of aqueous solution in sodium salts of hyaluronic acid (NaHLA) were observed on a cover glass, a watch glass, and a Petri glass dish. Dendritic and rod-like microscopic patterns, which are similar to those of sodium salts of carboxymethyl cellulose, were observed for NaHLA especially on a cover glass and a watch glass. The microscopic patterns of NaHLA are supported to be originated from the hexose groups of polysaccharides, though the similar dendritic patterns are also observed for some of polynucleotides, sodium salts of deoxyribonucleic acid, and potassium salts of poly (riboadenylic acid), for example. Macroscopic broad ring size decreased substantially from the initial size of liquid and decreased slightly as polymer concentration decreased. These observations are consistent with existence of the rather strong interpolymer affinitive forces during the course of dryness. In the coexistence of sodium chloride, microscopic dendritic patterns grew large especially on a cover glass and a watch glass, which was so often observed for polysaccharides examined hitherto. Drying patterns are clarified to be formed by the successive and cooperative processes of evaporation, convection, sedimentation, and solidification.  相似文献   

4.
Drying dissipative patterns were observed at room temperature on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solution of sodium salts of dextran sulfate (NaDSS) having molecular weights of 5000, 36,000 ~ 50,000 and 500,000. These biopolyelectrolytes are one of the typical polysaccharides. The influences of the hexose units upon the macroscopic and microscopic drying patterns are studied. Formation of some ordered structure is observed for NaDSS in high polymer concentrations especially on a cover glass. Broad ring size decreased as polymer concentration decreased and/or its molecular weight increased. Drying patterns are clarified to be formed by the successive and cooperative pattern formation of convection, sedimentation, and solidification.  相似文献   

5.
Drying dissipative patterns of deionized suspensions (colloidal crystal state at high concentrations) of the thermo-sensitive gels of poly(N-isopropylacrylamide) with low degree of cross-linking of 0.5% (318 nm and 116 nm in the hydrodynamic diameter at 25 °C and 45 °C) were observed at 20 °C and 45 °C on a cover glass, a watch glass and a Petri glass dish. The broad rings were observed and their size decreased as micro-gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) flickering ordered spoke-lines, (b) ordered rings, (c) net structure, and finally (d) lattice-like ordered structures of the agglomerated particles. The net and lattice structures formed more favorably at higher temperatures and/or higher degree of cross-linking of the gels. Importance of the convectional flow of the agglomerated particles during the drying processes is supported for the ordered array formation. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are also important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear-type polymers and also from typical colloidal spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.  相似文献   

6.
Sedimentation and drying dissipative patterns formed in the course of drying green tea (Ocha) have been studied in tea cup (Ochawan), glass dish, polystyrene dish, and watch glass. The broad-ring patterns are formed within several tens of minutes in suspension state by the convectional flow of water and colloidal particles of green tea (7 μm in mean size and 5 μm in its dispersion from the mean size). Formation of the broad-ring patterns is retarded when a tea cup is covered with a watch glass, which demonstrates the important role of the convectional flow of tea particles and water induced by the evaporation of water at the air-suspension interface under the gravity. The sedimentary particles are suspended above the substrate plate and always move by the convectional flow of water. The broad-ring patterns become sharp just before the solidification occurs. The broad rings are formed even in an inclined glass dish, though the rings are transformed slightly, which demonstrates the strong convectional flow of the particles. The drying broad rings and the microscopic fine structures are formed in the solidification processes on the bases of the convectional and sedimentation patterns in suspension state.  相似文献   

7.
Drying dissipative patterns of deionized and colloidal crystal-state suspensions of the cationic gel spheres of lightly cross-linked poly(2-vinyl pyridine) stabilized with poly(ethylene glycol) were observed on a cover glass, a watch glass, and a Petri glass dish. Convectional patterns were recognized with the naked eyes. The broad rings were observed in the drying pattern and their size and width decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke-lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordering of the agglomerated particles of the cationic gel spheres is similar to that of the anionic thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrates during dryness are important for the ordering. The microscopic drying patterns of gel spheres were different from those of linear-type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges were similar to each other. The addition of sodium chloride shifted the microscopic patterns from lattice to net structures.  相似文献   

8.
Drying dissipative patterns of de-ionized suspensions (colloidal crystal state above the critical concentrations of crystallization) of the thermo-sensitive gels of poly(N-isopropylacrylamide) with degrees of cross-linking of 10% and 2% (pNIPAm(200–10) and pNIPAm(200–2)) were observed at 20?°C and 45?°C on a cover glass, a watch glass, and a Petri glass dish. The broad rings were observed, and their size decreased as micro-gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. Microscopic drying structures of (a) flickering ordered spoke-lines, (b) ordered rings, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles are observed. The net and lattice structures formed more favorably at high degrees of cross-linking, at high concentrations of the gels, and/or high temperatures. By the addition of sodium chloride, very large dendrite-like and net structures of the large agglomerated particles formed at 20?°C and 45?°C, respectively. Importance of the cooperated convectional flow of the agglomerated particles during the drying processes is supported for the ordered array formation. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are also important for the ordering. The microscopic drying patterns of gel spheres were different from those of linear type polymers and also from typical colloidal spheres, though the macroscopic patterns of gel system such as broad ring formation at the edges of the dried film were similar to other two systems.  相似文献   

9.
Drying dissipative patterns were observed at 25 °C, 33 °C, and 45 °C on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of colloidal crystals of the thermo-sensitive gels of poly(N-isopropylacrylamide) (PNIPA). Two kinds of broad rings, i.e., transparent ring at the outside edge and the ring in the inner area from the edge, were observed. Sizes of the former were the same as those of the initial liquids irrespective of gel concentration, whereas sizes of the latter decreased as gel concentration decreased. These broad rings were composed mainly of the monomeric and the agglomerated gel particles, respectively. Formation of the monodispersed agglomerated particles and their ordered arrays in the inner area of the dried film were observed especially on a Petri glass dish and a watch glass. The important role of the electrical double layers formed around the agglomerated particles is supported for the ordering of the agglomerated particles. The essential differences in the drying patterns between PNIPA gel spheres and the typical colloidal particles did not appear.  相似文献   

10.
The sedimentation and drying dissipative structural patterns formed during the course of drying colloidal silica spheres (CS550, 560 nm in diameter) in an aqueous suspension have been studied in a glass dish and a watch glass. Broad ring patterns were formed within 20 min in the suspension state by the convectional flow of the colloidal spheres and water. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The sharpness of the broad rings was sensitive to the change in the room temperature and/or humidity. Colorful macroscopic structures were composed of the broad ring and wave-like patterns, and further colorful and beautiful microscopic fine patterns formed during the solidification processes based on the convectional and sedimentation structures. The drying patterns of the colloidal suspensions containing sodium chloride were different from the structures of CS550 or sodium chloride individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salts.  相似文献   

11.
Macroscopic and microscopic dissipative structural patterns are formed in the course of drying a suspension of Chinese black ink on a cover glass and in a dish. The time for the drying and the pattern area increased as the particle concentration increased. The broad ring patterns of the hills accumulated with the particles formed around the outside edges on a macroscopic scale. The height and the width of the broad ring increased as the particle concentration increased. The spokelike patterns of the rims accumulated with particles were also formed on a macroscopic scale. Microscopic patterns of colloidal accumulation were observed over the whole region of the pattern area. Various types of convection cells were observed on a cover glass and in a dish at 25–80 °C. A time-resolved observation of the drying process was also made. The convections of water and the colloidal particles at different rates under gravity and the translational and rotational Brownian movement of the particles were important for the macroscopic pattern formation. Microscopic patterns were determined by the translational Brownian diffusion of the particles and the electrostatic and the hydrophobic interactions between the particles and/or between the particles and the cell wall in the course of the solidification of the particles.  相似文献   

12.
Drying dissipative patterns of de-ionized suspensions (colloidal crystal-state at high concentrations) of the thermosensitive gels of poly (N-isopropylacrylamide) with various sizes (ca. 400–1,500?nm in diameter at 20?°C) were observed at 20 and 45?°C on a cover glass, a watch glass, and a Petri glass dish. The broad rings were observed and their size decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed irrespective of gel size. The macroscopic flickering spoke-like patterns were observed for the gel spheres from 70 to 600?nm in diameter at 20?°C, but almost disappeared for extremely large spheres, poly(N-isopropylacrylamide)(1500-5). This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordered rings became rather vague as gel size increased. The large net structures formed so often for large gels. Size effect on the lattice patterns was not recognized so clearly. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.  相似文献   

13.
Drying dissipative structures of aqueous solution of poly(ethylene glycol) (PEG) of molecular weights ranging from 200 to 3,500,000 were studied on a cover glass, a watch glass, and a glass dish on macroscopic and microscopic scales. Any convectional and sedimentation patterns did not appear during the course of drying the PEG solutions. Several important findings on the drying patterns are reported. Firstly, the crystalline structures of the dried film changed from hedrites to spherulites as the molecular weight and/or concentration of PEG increased. Secondly, lamellae were formed along the ring patterns especially at high concentrations and high molecular weights. The coupled crystalline patterns of the spherulites and the lamellae were observed in a watch glass along the ring structures, supporting the important role of the convection by the gravity during the course of dryness. The coupled patterns were difficult to be formed on a cover glass and a glass dish, except at the outside edge of the dried film. Thirdly, the size of the broad ring at the outside edge of the dried film especially on a cover glass and a watch glass increased sharply as the molecular weight increased and also as the polymer concentration increased. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Drying dissipative structures of aqueous solutions of hydroxypropyl cellulose, their viscosities of 2 wt.% solutions ranging from 2 to 2,000 mPa.s were studied on a cover glass, a watch glass, and a Petri glass dish. The thickness profile of the dried film shows the coexistence of a low round hill and a high broad ring on a cover glass. The broad ring size increased as molecular weight and/or concentration of the polymers increased on a cover glass and a watch glass. Microscopic drying crystal patterns of HPC changed as a function of the distance from the film center, which is one of the typical results of the dissipative crystallization. Rod-like microscopic drying patterns originated in the cholesteric liquid crystalline structures were observed. The rods oriented mainly parallel and in some case perpendicularly to the radial direction of the dried film except the central area, where the rods distributed at random. These orientation effects were significant for low molecular weight samples and in a watch glass.  相似文献   

15.
Macroscopic and microscopic drying patterns were observed on a cover glass and a watch glass during the course of dryness of aqueous mixtures of β-cyclodextrin (βCD) with n-alkyltrimethylammonium bromide (alkyl: n-decyl, n-dodecyl, n-tetradecyl, and n-hexadecyl). Macroscopic patterns of the broad rings and the spoke lines appeared. The inclusional association constants of βCD with the cationic surfactants were determined from the bent points in the curves of the drying broad-ring size vs. surfactant concentration when a finite amount of cyclodextrin presents. The short and thick rod-like microscopic drying patterns were observed for the inclusional complexes.  相似文献   

16.
Macro- and microscopic drying patterns were observed on a cover glass and a watch glass during the course of dryness of aqueous solutions of a series of n-alkyltrimethylammonium bromides (alkyl: n-decyl, n-dodecyl, n-tetradecyl, and n-hexadecyl). The broad rings formed at the outside edges of the macroscopic patterns. Size of the initial liquid on the substrates, d i, that of the final broad ring, d f, and the ratio, d f/d i, changed as the surfactant concentration changed, and there appeared a bending point in each curve, which was found to correspond to the critical micelle concentration (cmc) of the surfactant. The cmc values evaluated from the d i, d f, and d f/d i values agreed well with the reference values reported previously. Cooperative drying processes of the convection, sedimentation, and solidification were supported. Microscopic drying patterns such as rod-like, dendritic, and granule-like patterns were observed, and they changed as a function of the carbon number of the alkyl groups, surfactant concentration, and the distance from the center of the pattern.  相似文献   

17.
Drying dissipative patterns of cationic gel crystals of lightly cross-linked poly(2-vinyl pyridine) spheres (AIBA-P2VP, 170?~?180 nm in diameter) were observed on a cover glass, a watch glass, and a Petri glass dish. Convectional patterns were recognized with the naked eyes. Two kinds of the broad rings were observed at the outside edge and inner region in the macroscopic drying pattern, and their size at the inner regions first decreased and then turned to increase as gel concentration decreased. Formation of the similar-sized aggregates, i.e., hierarchical aggregation and their ordered arrays were observed. This work supported strongly the formation of the microscopic drying structures of (a) ordered rings, (b) flickering ordered spoke-lines, (c) net structure, and (d) lattice-like ordered structures of the aggregated particles. The ordering of the similar-sized aggregates of the cationic gel spheres (AIBA-P2VP) in this work is similar to that of the large cationic gel spheres of poly(2-vinyl pyridine) (385?~?400 nm in diameter) and further to that of the anionic thermosensitive gel spheres of poly(N-isopropyl acrylamide). Role of the electrical double layers around the aggregates and their interaction with the substrates during dryness are important for the ordering. The microscopic drying patterns of gel spheres were different from those of linear-type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation were similar to each other.  相似文献   

18.
Drying patterns of aqueous solutions of sodium salt of deoxyribonucleic acid (NaDNA) were studied on a cover glass, a watch glass, and a Petri glass dish at room temperature. Orientation of the rod-like single crystals of NaDNA molecules in the radial direction was observed especially at low polymer concentrations. The ratios of the size of the broad ring against initial size of the liquid on a cover glass and a watch glass were very small between 0.05 and 0.1 compared with those of the typical polyelectrolytes. Main cause is the compact conformation of NaDNA forming single or double stranded helix structures in the dried film. Microscopic drying patterns were long rods accompanied with the many short rods especially on a cover glass. Thick and short rods and dendritic crystals were fogrmed at the inward and outward areas of the dried films, respectively, on a watch glass and a Petri glass dish. Rod-like and dendritic crystals resembled the distorted hedrite and/or spherulite structures. Dissipative crystallization such as the orientation and accumulation of the single crystals of NaDNA were observed and the importance of the convectional and sedimentation processes was demonstrated during the course of crystallization.  相似文献   

19.
Convectional, sedimentation, and drying dissipative structural patterns formed during the course of drying aqueous colloidal crystals of silica spheres (183 nm in diameter) have been studied in a glass dish and a watch glass. Spoke-like convectional patterns were observed in a watch glass. The broad ring sedimentation patterns formed especially in a glass dish within 30–40 min in suspension state by the convectional flow of water and colloidal spheres. The macroscopic broad ring drying patterns formed both in a glass dish and a watch glass. The ratio of the broad ring size in a glass dish against the initial size of suspension, i.e., inner diameter of the glass dish, d f/d i, in this work, were compared with previous work of other silica spheres having sizes of 305 and 560 nm and 1.2 μm in diameter. The d f/d i values in a glass dish increased as sphere concentration increased, but were rather insensitive to colloidal size. The d f/d i values on a watch glass also increased as sphere concentration increased, and further increased as sphere size decreased. Segregation effect by sphere size in a watch glass takes place by the balancing between the upward convectional flow of spheres in the lower layers of the liquid and the downward sedimentation of spheres. Colorful microscopic drying patterns formed both in a glass dish and a watch glass.  相似文献   

20.
Convectional, sedimentation, and drying dissipative structures of black tea with and without cream were studied in a tea cup, a cover glass, a watch glass and a glass dish on macroscopic and microscopic scales. The convectional patterns were vigorous and irregular at the initial stage but soon highly distorted Bernard cells grew. The global integrated flows of the tea particles coated with cream at the air–suspension interface were observed vaguely from the central area toward outside edge at the initial stage in a tea cup and a large watch glass, but the flow direction turned oppositely from the outside to the central area. At the similar time, the short and few spoke lines appeared at the outside edge and grew long toward the central area. Then, the cooperative formation of clusters and bundles of the spoke lines took place at the middle and final convectional stages, and then the dynamic sedimentation patterns appeared. The drying patterns of tea with and without cream were composed of the broad ring at the outside edge and a round hill accompanied sometimes with the bundles of spoke lines. These features are consistent with those of suspensions of non-spherical particles. The pinning effect is not always supported by this work, but importance of the gravitational and Marangoni convectional flows is proposed instead. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号