首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The wake structure of discs and bluff rings has been investigated experimentally in a wind tunnel. The rings have an inner diameter di, and an outer diameter do and are classified according to the parameter (do + di)/(dodi) = d/w. the ratio of mean diameter to ring width. As d/w → ∞ the flow approaches that around a two dimensional bluff body whereas as d/w tends to unity the body approaches a solid disc. A distinct change in the vortex shedding pattern is found around d/w = 5. Below this critical value velocity fluctuations in the wake have a weak periodic component which is 180° out of phase across a diameter of the body. Above d/w = 5. regular and coherent axisymmetric vortex ring shedding is observed with shedding occurring alternately from the inner and outer circumferences of the bluff body. Flow visualization and conditional averaging of hot-wire data are used to investigate the vortex structure.  相似文献   

2.
This paper analyses steady two-dimensional mixed convection of an imcompressible viscous fluid in a porous medium past a hot vertical plate. Assuming Darcy-Brinkman model for the flow in a porous medium, the boundary layer equations are integrated numerically to obtain the non-similar solution for the velocity and temperature distribution for several values of the permeability and viscous dissipation parameters. It is shown that for a fixed value of Prandtl number Pr and dissipation parameter E, the skin-friction at the plate decreases with increase in the permeability parameter K1. However for the same value or Pr and E, the heat transfer rate at the plate increases with increasing K1. The dimensionlcss velocity and temperature functions in the flow are plotted for several values of E and K1 with Pr = 0.73. It is also shown that for fixed values of K1, and KPr, the skin-friction increases with increase in the dissipation parameter E.  相似文献   

3.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


4.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


5.
The constructions made of bars and plates with holes, openings and bulges of various forms are widely used in modern industry. By loading these structural elements with different efforts, there appears concentration (accumulation) of stress whose values sometimes exceeds the admissible one. The durability of the given element is defined according to the quantity of these stresses. Since the failure of details and construction itself begins from the place where the stress concentration has the greatest value.

Therefore the exact determination of stress distribution in details (bars, plates, beams) is of great scientific and practical interest and is one of the important problems of the solid fracture.

Compound details (when the nucleus of different material is soldered to the hole) are often used to decrease the stress concentration.

In the present paper, we study a stress–strain state of polygonal plate weakened by a central elliptic hole with two linear cracks info which a rigid nucleus (elliptic cylinder with two linear bulges) of different material was put in (soldered) without preload.

The problem is solved by a complex variable functions theory stated in papers [Theory of Elasticity, Higher School, Moscow, 1976, p. 276; Plane Problem of Elasticity Theory of Plates with Holes, Cuts and Inclusions, Publishing House Highest School, Kiev, 1975, p. 228; Bidimensional Problem of Elasticity Theory, Stroyizdat, Moscow, 1991, p. 352; Science, Moscow (1996) 708; MSB AH USSR OTH 9 (1948) 1371].

Kolosov–Mushkelishvili complex potential (z) and ψ(z) satisfying the definite boundary conditions are sought in the form of sums of functional series.

After making several strict mathematical transformations, the problem is reduced to the solution of a system of linear algebraic equations with respect to the coefficients of expansions of functions (z) and ψ(z).

Determining the values of (z) and ψ(z), we can find the stress components σr, σθ and τrθ at any point of cross-section of the plate and nucleus on the basis of the known formulae. The obtained solution is illustrated by numerical example.

Changing the parameters A1, m1, e, A2, and m2 we can get the various contour plates.

For example, if we assume m1=0, A1=r, then the internal contour of L1 becomes the circle of radius r with two rectilinear cracks (for the nucleus––a rectilinear bulges).

Further, if we assume a small semi-axis of the ellipse b1 to be equal to zero (b1=0), then a linear crack becomes the internal contour of L1 (and the nucleus becomes the linear rigid inclusion made of other material). For m2=0; A2=R, the external contour L2 turns into the circle of radius R.

The obtained method of solution may be applied and in other similar problems of elasticity theory; tension of compound polygonal plate, torsion and bending of compound prismatic beams, etc.  相似文献   


6.
The existence and asymptotic behavior as ε → 0+ of periodic, almost periodic, and bounded solutions of the differential system x = f(t, x, y, ε), Ωy′ = g(t, x, y, ε), are considered where x, f; are n-vectors, y, g are m-vectors and Ω = diag{εh1}…, εhm for integral hi, h1 h2 …, hm. The principal tools are a lemma of Nagumo which allows the construction of appropriate upper and lower solutions and the asymptotic theory of singularly perturbed linear differential systems.  相似文献   

7.
Asymptotic soliton trains arising from a ‘large and smooth’ enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup–Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr–Sommerfeld quantization rule which generalizes the usual rule to the case of ‘two potentials’ h0(x) and u0(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u0(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup–Boussinesq equations with predictions of the asymptotic theory is found.  相似文献   

8.
The installation of windbreak sand fences around sand dunes is one of the most promising methods to suppress windblown sand movement. In the study reported in this paper, we investigated the influence and validity of a small fence mounted on a model sand dune, in order to understand the fence’s suppression mechanism on the sand movement. The flow field around the dune and the process of sand-dune erosion were measured using LDV, PIV, and laser-sheet visualization techniques. A non-porous fence was found to suppress sand movements in its upstream area, but to enhance erosion downstream of the fence. This intensive erosion was caused by separated shear flow from the leading edge of the fence. In this study, four levels of porosity rate of the fence were tested. The fence-porosity dependences of the turbulent flow field and the erosion were discussed. The shapes of eroded sand dunes were found to depend on the porosity rate. The relationship between the sand-dune erosion and the flow field around the dune was illustrated with schematic diagrams. We concluded that the most desirable fence porosity should be 30% in order to avoid dune erosion if installed at a middle height on the stoss surface of a dune. This porosity provides a mean velocity reduction with avoiding a separated flow, although the flow bleeding through the porous fence is accompanied by grid turbulence and induces serious erosion in a narrow space behind the fence. Furthermore, we confirmed that the empirical correlation of the critical friction velocity can be applied to sand movements influenced by a fence.  相似文献   

9.
An experimental investigation was carried out on the heat transfer due to a submerged slot jet of water impinging on a circular cylinder in crossflow. The cylinder diameter and the slot width are of the same order of magnitude, specifically Ds = 2.0 and 3.0 mm and Dc = 2.5 and 3.0 mm. The experimental apparatus allowed variation of the slot width, the cylinder diameter, and the distance from nozxle exit to heater. Conditions of impingement from the bottom (ascending flow) were taken into consideration as well as impingement from above (descending flow). The Nusselt number was determined as a function of Reynolds and Prandtl numbers in the range 1.5 × 103 < Re < 2.0 × 104, 2.7 < Pr < 7.0, and 1.5 ≤ z/Ds ≤ 10. The experimental data were correlated with a simple equation that fits 90% of the data with a precision of 20%.  相似文献   

10.
Inertial stability of a vertical shear layer (Stewartson E1/4-layer) on the sidewall of a cylindrical tank with respect to stationary axisymmetric perturbations is inverstigated by means of a linear theory. The stability is determined by two non-dimensional parameters, the Rossby number Ro = U/2ΩL and Ekman number E = vH2, where U and L = (E/4)1/4H are the characteristic velocity and width of the shear layer, respectively, Ω the angular velocity of the basic rotation, v the kinematic viscosity and H the depth of the tank.

For a given Ekman number, the flow is more unstable for larger values of the Rossby number. For E = 10−4, which is a typical value of the Ekman number realized in rotating tank experiments, the critical Rossby number Roc for instability and the critical axial wavenumber mc non-dimensionalized by L−1 are found to be 1.3670 and 8.97, respectively. The value of Roc increases and that of mc decreases with increasing E.  相似文献   


11.
The lag-entrainment predictive scheme developed by Green et al. has been modified to include the pressure-gradient parameter Π1. In the original model suggested by Green et al. the mass-flow shape factor H1 is related to the common shape factor H, H1 = f(H). In the present model H1 is related to H, Reynolds number based on the local momentum thickness θ, and Π1; thus H1 = f(H, Reθ, Π1). The modified formula for H1, is introduced into the original lag-entrainment integral model. Calculations are made to examine the present model for the predictions of the development of boundary layers approaching separation studied experimentally by the authors. Slightly improved predictions are obtained using the model developed by El Telbany et al. However, the present model proved to give an improved representation of the development of wall shear stress in cases the two-equation turbulence model proved to be unsuccessful.  相似文献   

12.
Correlation dimension of paddy soil strength in China   总被引:2,自引:0,他引:2  
Embedding phase space Rm is reconstructed from the spatial series g(x) of cone indices measured in two paddy fields near Nanjing, China. The correlation dimension D2m for each field is derived from the correlation integral Cm(r) and the neighbours distance r in log–log scale. Results show D2m increases as m, and tends to 5.0, which expresses the estimate of correlation dimension for each soil strength profile measured.  相似文献   

13.
The effect of tube diameter (d) on Preston tube calibration curves for the measurement of wall shear stress (τw) in a zero pressure gradient turbulent boundary layer has been investigated. Five different outside diameter tubes of 1.46, 1.82, 3.23, 4.76 and 5.54 mm, corresponding to (d/δ) of 0.022, 0.027, 0.048, 0.071 and 0.082 were used to measure τw at Reynolds numbers based on momentum thickness (Rθ) of 2800–4100. The calibration curves of Patel (V.C. Patel, J. Fluid Mech. 23 (part I) (1965) 185–208) and Bechert (D.W. Bechert, AIAA J. 34 (1) (1995) 205–206) are both dependent on the tube diameter. The maximum difference in the τw measurements from the different tubes using Patel's calibration is about 8%, while Bechert's calibration gives a maximum difference of approximately 18%.  相似文献   

14.
This experimental research was focused on the investigation of the heat transfer augmentation by various turbulator inserts in gas-heated channels. The work was conducted directly in a convective part of a two fire-tube boiler. The flue ducts were positioned vertically and horizontally for various design applications. Twisted-tape insert (with the twist ratio y=4.12), the straight-tape insert, and the combined turbulator insert (the internal twisted tape with the twist ratio of 180° y=2.16 and an external tape, which spirally winded on an internal tape, with longitudinal pitch H360°=110 mm and the relative height of a tape (rib) e/D0=0.098;0.2) were investigated. The working fluids were the combustion products of light oil fuel and wood pellets. In addition, the experiments were conducted in the two fire-tube boiler without any inserts. Despite of relatively large data scattering obtained in these experiments some qualitative and quantitative conclusions were drawn.  相似文献   

15.
The flow field behind porous fences of geometric porosity ε=38·5% with various bottom gaps (G) has been investigated using a hybrid PTV velocity field measurement technique. Four gap ratiosG /H=0·0, 0·1, 0·2 and 0·3 were tested in this study. One thousand instantaneous velocity vector fields in the xy plane were consecutively measured for each gap ratio. The free-stream velocity was fixed at 10cm/s and the corresponding Reynolds number based on the fence height (H) was Re=2985. The results show that the gap ratio G/H=0·1 gives the best shelter effect among the four gap ratios tested in this study, having a small shelter parameter ψ in a large area behind the fence. As the gap ratio increases, the region of mean velocity reduction decreases and the lower shear layer developed from the bottom gap expands upward. From the spatial distributions of turbulence statistics including turbulence intensities, Reynolds shear stress and turbulent kinetic energy, the wake characteristics can be divided into two categories depending on the gap ratio. When the gap ratio is aboveG /H=0·2, the turbulence statistics have large values in the lower shear layer. For the gap ratio G/H≤0·1, however, the lower shear layer displays small turbulence-statistics values and approach those of the no-gap case (G/H=0) with increasing distance downstream. In the upper shear layer separated from the fence top, the turbulence statistics are nearly independent of the gap ratio.  相似文献   

16.
The effect of the Reynolds number on vortical structures in a turbulent far-wake has been investigated for Red (based on the free stream velocity and the cylinder diameter) =2800 and 9750. Velocity data were obtained using two orthogonal arrays of 16 X-wires, eight in the (x,y)-plane and eight in the (x,z)-plane. Structures were detected in both planes using a technique based on vorticity concentration and circulation. Conditional streamlines and contours of vorticity based on spanwise structures, i.e. detections in the (x,y)-plane, reveal that the streamwise size of spanwise structures increases as Red increases. The interrelationship is investigated between detections simultaneously identified in the two planes. Transverse structures, i.e. detections in the (x,z)-plane, correspond, with a relatively high probability, to spanwise structures, in conformity with a distortion in the (y,z)-plane of spanwise structures. Those that correspond, with relatively high probability, to the saddle between consecutive spanwise structures are interpreted in terms of ribs, whose signatures are detectable in instantaneous data. The probability is also high for transverse structures to occur between the focus of a spanwise structure and its associated saddle when Red=9750, but not when Red=2800. This is consistent with an increased vortex pairing frequency at the higher Red, as observed in instantaneous sectional streamlines.  相似文献   

17.
Flow of an incompressible viscous fluid contained in a cylindrical vessel (radius R, height H) is considered. Each of the cylinder endwalls is split into two parts which rotate steadily about the central axis with different rotation rates: the inner disk (r < r1) rotating at Ω1, and the outer annulus (r1 < r < R) rotating at Ω2. Numerical solutions to the axisymmetric Navier-Stokes equations are secured for small system Ekman numbers E ( v/(ΩH2)). In the linear regime, when the Rossby number Ro , the numerical results are shown to be compatible with the theoretical prediction as well as the available experimental measurements. Emphasis is placed on the results in the nonlinear regime in which Ro is finite. Details of the structures of azimuthai and meridional flows are presented by the numerical results. For a fixed Ekman number, the gross features of the flow remain qualitatively unchanged as Ro increases. The meridional flows are characterized by two circulation cells. The shear layer is a region of intense axial flow toward the endwall and of vanishing radial velocity. The thicknesses of the shear layer near r = r1 and the Ekman layer on the endwall scale with E and E , respectively. The numerical results are consistent with these scalings.  相似文献   

18.
对Re=22 000 时径厚比D/h=5 圆盘近尾迹开展大涡模拟数值研究. 通过对x/D=1, 2 和8 处脉动速度进行快速傅里叶变换(fast Fourier transformation, FFT),发现3 个特征频率:斯特劳哈尔数St2=0.123 为自然脱落频率,与文献结果相符;较小频率St1=0.035,与回流区伸缩和剪切层附近涡旋脱落点的旋转相关;高频率St3=1.3~1.7 则与剪切层湍流结构相关. 通过分析截面r/D=2.8 圆周上两点间流向速度相关系数、相干谱和相位谱,发现相关系数受涡旋脱落影响出现以30°或45°为周期的正负波动,表明轴面上涡旋脱落点具有随机性.  相似文献   

19.
A numerical study is made of flow and heat transfer characteristics of forced convection in a channel that is partially filled with a porous medium. The flow geometry models convective cooling process in a printed circuit board system with a porous insert.The channel walls are assumed to be adiabatic. Comprehensive numerical solutions are acquired to the governing Navier-Stokes equations, using the Brinkman-Forchheimer-extended Darcy model for the regions of porous media. Details of flow and thermal fields are examined over ranges of the principal parameters; i.e., the Reynolds number Re, the Darcy number Da (≡K/H2), the thickness of the porous substrate S, and the ratio of thermal conductivities Rk (≡keff/k). Two types of the location of the porous block are considered. The maximum temperature at the heat source and the associated pressure drop are presented for varying Re, Da, S, and Rk. The results illustrate that as S increases or Da decreases, the fluid flow rate increases. Also, as Rk increases for fixed Da, heat transfer rates are augmented. Explicit influences of Re on the flow and heat transport characteristics are also scrutinized. Assessment is made of the utility of using a porous insert by cross comparing the gain in heat transport against the increase in pressure drop.  相似文献   

20.
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar–turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Reω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (uk), and decreases to 1.2uk, which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and :β:γ = −5:1:4 in the transition process. In addition to Kelvin–Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号