首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The annulus fibrosus comprises concentric lamellae that can be damaged due to intervertebral disc degeneration; to provide permanent repair of these acquired structural defects, one solution is to fabricate scaffolds that are designed to support the growth of annulus fibrosus cells. In this study, electrospun nanofibrous scaffolds of polycaprolactone are fabricated in random, aligned, and round-end configurations. Primary porcine annulus fibrosus cells are grown on the scaffolds and evaluated for attachment, proliferation, and production of extracellular matrix. The scaffold consisting of round-end nanofibers substantially outperforms the random and aligned scaffolds on cell adhesion; additionally, the scaffold with aligned nanofibers strongly affects the orientation of cells.  相似文献   

2.
DNA compaction, encapsulation and stabilization strategies as well as a scheme for DNA chain stabilization by complex formation with modified fullerenes for gene delivery are discussed. DNA can be compacted in organic solvents and encapsulated with amphiphilic triblock copolymers. The rapid removal of the solvent mixtures by electrospinning together with a biodegradable polymer preserves the globular DNA conformation and can be used for bone reconstruction applications. Cationic fullerene surfactants can decorate and stabilize DNA coils in aqueous solution. The complex formation process is studied by static light scattering and analyzed in detail.  相似文献   

3.
爆炸物检测作为打击爆炸恐怖主义的重要措施之一,正日益彰显出广阔的应用前景.其中,静电纺荧光纳米纤维膜在爆炸物检测领域已展现出其独特的优点,可满足爆炸物检测所需的检测速度快、检测灵敏度高等要求.本文总结了近年来静电纺荧光纳米纤维膜在爆炸物检测中的代表性成果,简要介绍了爆炸物荧光传感机理、静电纺丝技术原理、静电纺荧光纳米纤维膜的制备方法及其爆炸物检测性能的影响因素;系统、重点梳理了有机小分子体系、共轭聚合物体系、聚集诱导发光体系及其他荧光材料体系的静电纺荧光纳米纤维膜在爆炸物检测中的应用,并针对该领域尚未解决的问题和未来可能的发展方向进行了展望,可为实际爆炸物检测中静电纺荧光纳米纤维膜的设计提供指导.  相似文献   

4.
5.
The graphene‐based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide‐silver (rGO‐Ag) nanocomposites (1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO‐Ag nanocomposites were studied by X‐ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO‐Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real‐time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA‐4, T‐box 18 (TBX 18), cardiac troponin T (cTnT), and alpha‐myosin heavy chain (α‐MHC) in the PU/rGO‐Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO‐Ag–reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.  相似文献   

6.
A new method to prepare poly (vinyl alcohol) hydrogels by nebulization method.is introduced. A blend of Poly (vinyl alcohol) (PVA), sodium gum malate (SGM) and cellulose nanofibers (CNFs) originated from Catha Edulis was prepared and tested as neural tissue substitutes. Glutaraldehyde (GLA) was used as a crosslinker. Presence of SGM and CNFs in the formulation improved the nebulization process of PVA solution as well as mechanical properties of the fabricated hydrogels. The tensile strength of neat PVA films attains 46.7 MPa, while the tensile strength was 94.23 MPa for crosslinked-PVA. The tensile strength was found to increase with the increase in the CNFs content in the PVA compared with PVA/SGM. These soft tissues were characterized by using FTIR, SEM, and DSC. Scanning electron microscopy (SEM) results showed that PVA/SGM/CNFs blends has a diameter about 50 ± 8µm. The hydrogels were tested also for antimicrobial activities against pathogenic bacteria like Candida albicans (fungus), Bacillus subtilis (G + Ve), Staphylococcus aureus (G + Ve), Proteus vulgaris (G ? Ve) and Erwinia carotovora (G ? Ve). Favorable mechanical, thermal properties and biodegradation nature of the hydrogels, as well as antimicrobial property indicate that prepared hydrogels are suitable for tissue engineering applications.  相似文献   

7.
Nanostructured biomaterials have great potential in the field of biomedical engineering. Efforts for treatment of cardiovascular diseases focused on introducing vascular substitutes that are nonthrombogenic and have long‐term patency, but still there is not any perfect replacement for clinical use. In this study, nanostructure tubes of a commonly known biocompatible polymer, polyethylene terephthalate (PET), were prepared via electrospinning process using small diameter mandrel as a collector with two different speeds. The nanofibers (NFs) morphologies' physical and mechanical properties were investigated according to scanning electron microscope (SEM), water contact angle (WCA), porosity measurement, differential scanning calorimetry (DSC), and tensile test. Finer NFs, more percentage of crystallinity, and superior mechanical properties were observed for samples prepared by higher speed mandrel. Since both samples stimulated platelet adhesion and activation, further surface modification with sodium nitrate as nitric oxide (NO) donor was done using two different approaches: dip‐coating and electrospraying. The modified NFs were evaluated via SEM, WCA, tensile test, platelets, and cell adhesion. The results showed more hydrophilicity, reduction in platelet adhesion, and improved blood compatibility for eNO‐HS (electrosprayed NO for higher collector speed) compared with other samples implying the promising potential of this fabrication and modification technique for improving PET‐based cardiovascular substitutes.  相似文献   

8.
Polymeric electrospun meshes are highly attractive as versatile platforms for numerous biomedical applications, tissue engineering, biosensors, and controlled release of bioactive agents. Herein, we describe the preparation and characterization of multilayered nanofibrous poly(ε-caprolactone) scaffolds with different embelin content by electrospinning technique. In vitro release in physiological and acidic pH and kinetic analysis were performed. The results show that it is possible to modulate the release profile depending on the number and thickness of layers added to drug-loaded scaffold that acts as an embelin reservoir. Electrospun multilayered scaffolds present characteristics, morphology and release profiles that could be very attractive for use as embelin controlled release systems.  相似文献   

9.
《先进技术聚合物》2018,29(10):2583-2592
The primary purpose of cold weather clothing is to shield the wearer from the extremities of the external environment. The thermal properties of nanofibers and their potential applications have tremendous scope and application in this area. The objective of this study was to investigate the mechanisms of heat transfer through fibrous insulation where the fiber diameter was less than 1 μm. Electrospinning process was used to produce flexible polyurethane and polyvinylidene fluoride nanofibers embedded with silica aerogel. The thermal and transport behavior of the samples was evaluated, and results were statistically analyzed. Presence of aerogel particles were confirmed through microscopic examination. Thermal behavior was investigated by using thermogravimetric analysis and differential scanning calorimetry. The results showed that the polyvinylidene fluoride nanofibrous membranes embedded with aerogel obtained a good thermal stability with lower weight loss than polyurethane nanofibrous membranes. The glass transition and melting point was not affected by the aerogel content in the layers, validating that polymers are not miscible. The increase in duration of electrospinning led to higher web thickness, which resulted in considerable decrease in air permeability. Considerable improvement of thermal insulation was observed by increasing the number and the weight per unit area of both nanofibrous membranes. The results confirmed increase in thermal insulation by embedding silica aerogel in nanofibrous membranes. With reference to the results, it could be concluded that nanofibers embedded with aerogel are good for thermal insulation in cold weather conditions. Thermal insulation battings incorporating nanofibers could possibly decrease the weight and bulk of current thermal protective clothing.  相似文献   

10.
11.
A photopolymerizationable mimic mussel protein structure monomer, dopamine methacrylamide (DMA), was synthesized. The photopolymerization of DMA was analysed by series real time near infrared spectroscopy (SRTIR). Dopamine methacrylamide/poly (ethylene oxide) (DMA/PEO) nanofibers were successfully prepared by electrospinning of aqueous DMA/PEO solution. Biocompatible nanofibrous membrane with good adhesion was produced by photocuring from the DMA/PEO nanofibers. The surface characterization and structure of the composite nanofibrous membrane were characterized by a scanning electron microscopy (SEM) and contact angle measurements. For identifying the potential crystalline of curing, a XRD method was used through comparing diffraction data. In the cell adhesion test we utilized the mouse fibroblast (L929) to exam the various use of the nanofibrous membrane as scaffolding materials for skin regeneration.  相似文献   

12.
Continuous defect-free nanofibers containing chitosan (Ch) or quaternized chitosan (QCh) were successfully prepared by one-step electrospinning of Ch or QCh solutions mixed with poly[(L-lactide)-co-(D,L-lactide)] in common solvent. XPS revealed the surface chemical composition of the bicomponent electrospun mats. Crosslinked Ch- and QCh-containing nanofibers exhibited higher kill rates against bacteria S. aureus and E. coli than the corresponding solvent-cast films. SEM observations showed that hybrid mats were very effective in suppressing the adhesion of pathogenic bacteria S. aureus. The hybrid nanofibers are promising for wound-healing applications.  相似文献   

13.
Bone tissue engineering has become one of the most effective methods for treating bone defects. In this study, an electrospun tissue engineering membrane containing magnesium was successfully fabricated by incorporating magnesium oxide (MgO) nanoparticles into silk fibroin and polycaprolactone (SF/PCL)-blend scaffolds. The release kinetics of Mg2+ and the effects of magnesium on scaffold morphology, and cellular behavior were investigated. The obtained Mg-functionalized nanofibrous scaffolds displayed controlled release of Mg2+, satisfactory biocompatibility and osteogenic capability. The in vivo implantation of magnesium-containing electrospun nanofibrous membrane in a rat calvarial defect resulted in the significant enhancement of bone regeneration twelve weeks post-surgery. This work represents a valuable strategy for fabricating functional magnesium-containing electrospun scaffolds that show potential in craniofacial and orthopedic applications.  相似文献   

14.
Nanofibers based on natural polymers have recently been attracting research interest as promising materials for use as skin substitutes. Here, we prepared photocrosslinked nanofibrous scaffolds based on methacrylated chitosan (MACS) by photocrosslinking electrospun methacrylated chitosan/poly (vinyl alcohol) (PVA) mats and subsequently removing PVA from the nanofibers. We comprehensively investigated the solution properties of MACS/PVA precursors, the intermolecular action between MACS and PVA components, and the morphology of MACS/PVA nanofibers. Results indicated that the fiber diameter and morphology of the photocrosslinked methacrylated chitosan-based nanofibrous scaffolds were controlled by the MACS/PVA mass ratio and showed highly micro-porous structures with many fibrils. In vitro cytotoxicity evaluation and cell culture experiments confirmed that MACS-based mats with micro-pore structure were biocompatible with L929 cells and facilitated cellular migration into the 3D matrix, demonstrating their potential application as skin replacements for wound repair.  相似文献   

15.
Nano-fibrous scaffolds for tissue engineering   总被引:13,自引:0,他引:13  
With the ability to form nano-fibrous structures, a drive to mimic the extracellular matrix (ECM) and form scaffolds that are an artificial extracellular matrix suitable for tissue formation has begun. These nano-fibrous scaffolds attempt to mimic collagen, a natural extracellular matrix component, and could potentially provide a better environment for tissue formation in tissue engineering systems. Three different approaches toward the formation of nano-fibrous materials have emerged: self-assembly, electrospinning and phase separation. Each of these approaches is very different and has a unique set of characteristics, which lends to its development as a scaffolding system. For instance, self-assembly can generate small diameter nano-fibers in the lowest end of the range of natural extracellular matrix collagen, while electrospinning has only generated large diameter nano-fibers on the upper end of the range of natural extracellular matrix collagen. Phase separation, on the other hand, has generated nano-fibers in the same range as natural extracellular matrix collagen and allows for the design of macropore structures. These attempts at an artificial extracellular matrix have the potential to accommodate cells and guide their growth and subsequent tissue regeneration.  相似文献   

16.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

17.
A biocomposite of hydroxyapatite (HAp) with electrospun nanofibrous scaffolds was prepared by using chitosan/polyvinyl alcohol (CS/PVA) and N-carboxyethyl chitosan/PVA (CECS/PVA) electrospun membranes as organic matrix, and HAp was formed in supersaturated CaCl2 and KH2PO4 solution. The influences of carboxylic acid groups in CECS/PVA fibrous scaffold and polyanionic additive poly(acrylic acid) (PAA) in the incubation solution on the crystal distribution of the HAp were investigated. Field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. It was found that addition of PAA to the mineral solution and use of matrix with carboxylic acid groups promoted mineral growth and distribution of HAp. MTT testing and SEM imaging from mouse fibroblast (L929) cell culture revealed the attachment and growth of mouse fibroblast on the surface of biocomposite scaffold, and that the cell morphology and viability were satisfactory for the composite to be used in bioapplications.  相似文献   

18.
张建  冯增国 《高分子科学》2010,28(5):829-840
<正>Random copolyester of poly(ε-caprolactone-co-L-lactide)(PCLA) with a 50:50 feeding molar ratio was synthesized via the ring-opening polymerization and functionalized by the end-capping reaction with acryloyl chloride.The resulting acrylated PCLA was then fabricated into small diameter tubular scaffolds by electrospinning technique and the formed scaffolds were followed by photocrosslinking under UV irradiation in the absence of photoinitiator.The mechanical strengths including tensile,suture retention and burst pressure were greatly enhanced after the photocrosslinking.The in vitro degradation data clearly revealed that the mechanical properties of the crosslinked scaffolds still remained after one month degradation in PBS solution,while those of the non-crosslinked ones lost heavily.The cytotoxicity assay on the mouse fibroblast L929 cells was conducted via MTT measurement.Furthermore,the observation on endothelial and fibroblast cell adhesion and proliferation was also made by using scanning electron microscopy(SEM).The initiator-free photocrosslinked tubular scaffolds show the potential to be used in vascular tissue engineering.  相似文献   

19.
Electrospun zein membranes were prepared using DMF as solvent. By changing the solution concentration, the electrospinning voltage and the distance between the spinneret and collector, nanofibrous meshes without bead defects could be obtained. In order to improve the mechanical strength of the hydrated zein meshes, core-shell-structured nanofibrous membranes with PCL as the core material and zein forming the shell were prepared by coaxial electrospinning. The core-shell structure of the composite fibers was confirmed by SEM characterization of the fibers, either extracted with chloroform to remove the inner PCL, or elongated to expose their cross-section. The composition and average diameter of the composite fibers could be modulated by the feed rate of the inner PCL solution. It was found that the core-shell fibrous membranes have similar wettability to the electrospun zein mesh. The presence of PCL in the fibers could significantly improve the mechanical properties of the zein membrane.  相似文献   

20.
羟基磷灰石和胶原是人体骨的主要成分,近年来,制备纳米羟基磷灰石/ 胶原复合材料已成为目前生物材料研究的热点之一[1-3].海藻酸钠是一种酸性的多聚糖,具有良好的生物相容性,目前已经被广泛应用于化学、生物、医药、食品等领域;海藻酸钠能与钙离子交联,可进一步获得具有良好弹性性能的网状结构[4,5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号