EI、Scopus 收录
中文核心期刊

不同加载状态下TA2钛合金绝热剪切破坏响应特性

周刚毅, 董新龙, 付应乾, 虎宏智

周刚毅, 董新龙, 付应乾, 虎宏智. 不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361. DOI: 10.6052/0459-1879-16-198
引用本文: 周刚毅, 董新龙, 付应乾, 虎宏智. 不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361. DOI: 10.6052/0459-1879-16-198
Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. DOI: 10.6052/0459-1879-16-198
Citation: Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. DOI: 10.6052/0459-1879-16-198
周刚毅, 董新龙, 付应乾, 虎宏智. 不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361. CSTR: 32045.14.0459-1879-16-198
引用本文: 周刚毅, 董新龙, 付应乾, 虎宏智. 不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361. CSTR: 32045.14.0459-1879-16-198
Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. CSTR: 32045.14.0459-1879-16-198
Citation: Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. CSTR: 32045.14.0459-1879-16-198

不同加载状态下TA2钛合金绝热剪切破坏响应特性

基金项目: 国家自然科学基金(11172144)和NSAF联合基金(U1230122)资助项目.
详细信息
    通讯作者:

    董新龙,教授,主要研究方向:冲击动力学.E-mail:dongxinlong@nbu.edu.cn

  • 中图分类号: O347.3

AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION

  • 摘要: 一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digitalimage correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用“冻结”试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构“软化”特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.
    Abstract: Adiabatic shear phenomena is generally considered as a material dynamic instability,which comes from the competition among thermal softening and the strain hardening, strain rate hardening. In this paper, the constitutive and dynamic behaviors of TA2 titanium alloy were studied with hat-shaped forced-shear specimens.. The stress states of its shear zone are firstly studied by theoretical analysis and numerical simulation to obtain the pure state of shear stress with the hat-shaped samples. The shear strain in specimen measured directly by the two-dimensional digital image correlation (DIC-2D) method, and the equivalent stress-equivalent strain curves under forced shear loading can be acquired. Furthermore, the dynamic stress-strain behaviors in compression conditions and hat-shaped shear condition are then studied experimentally for TA2 titanium alloy by split Hopkinson pressure bars technique. Its adiabatic shear failure evolution is investigated by microscopic metallurgical observation of ‘freezing’ sample. The dynamic constitutive and failure behavior of TA2 titanium alloy subject to different loading condition are analyzed. The results show that the dynamic constitutive curves obtained by cylindrical compression are in agreement with the curves of shear testing at the initial stage of plastic deformation, but its stress-strain curve appears separation with the plastic damage accumulation and adiabatic shear band (ASB) formation, which suggests that the plastic damage and ASB origination may be with the relevant the state of stress. It is also shown that the softened stress-strain curve gained by shear loading reflected ASBs initiation and evolution in the hat-shaped specimens, by contrast, the apparent equivalent stress-strain curve obtained by compression testing does not appear to be softening characteristic even if the symmetrical bi-conical ASBs and local crack distribution have appeared in the cylindrical specimen.
  • 1 Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. Applied Physics, 1944, 15:22-32
    2 Bai Y, Dodd B. Adiabatic Shear Localization:Occurrence, Theories and Applications. New York:Pergamon Press, 1992:155-187
    3 Wright TW. The Physics and Mathematics of Adiabatic Shear Bands. U.K:Cambridge University Press, 2002
    4 Dodd B, Bai Y. Adiabatic Shear Localization. Frontiers and Advances:Elsevier, London, 2012
    5 Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society, 1949, 62(11):676-700
    6 赵峰,李玉龙,索涛等. 高应变率下铸造镁合金AZ91的动态压缩性能及破坏机理. 中国有色金属学报,2009, 19(7):1163-1168(Zhao Feng, Li Yulong, Suo Tao, et al. Dynamic compressive behavior and damage mechanism of cast magnesium alloy AZ91. The Chinese Journal of Nonferrous Metals, 2009, 19(7):1163-1168(in Chinese))
    7 Wei ZG, Yu JL, Li JR, et al. Influence of stress condition on adiabatic shear localization of tungsten heavy alloy. International Journal of Impact Engineering, 2001, 26:843-852
    8 Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids, 1988, 36(1):251-283
    9 Peirs J, Verleysen P, Tirry W, et al. Dynamic shear localization in Ti6A14V. Procedia Engineering, 2011(10):2342-2347
    10 Meyer LW, Staskewitsch E, Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading. Mechanics of Materials, 1994, 17(2-3):203-214
    11 Hartmann KH, Kunze HD, Meyer LW. Metallurgical effects on impact loaded materials//Meyers MA, Murr LE eds. Shock Waves and High Strain Rate Phenomena in Metals, Concepts and Applications, New York:Plenum Press, 1981:325-337
    12 Rittel D, Wang ZG, Dorogoy A. Geometrical imperfection and adiabatic shear banding. International Journal of Impact Engineering, 2008, 35:1280-1292
    13 Bronkhorst CA, Cerreta EK, Xue Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel. International Journal of Plasticity, 2006, 22:1304-1335
    14 Chen YJ, Meyers MA,Nesterenko VF. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering A, 1999, 268:70-82
    15 Kad BK, Gebert JM, Perez-Prado MT, et al. Ultrafine-grain-sized zirconium by dynamic deformation. Acta Materialia, 2006, 54:4111-4127
    16 Peirs J, Verleyse P, Degrieck J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6AL-4V. International Journal of Impact Engineering, 2010, 37:703-714
    17 Lee WS, Chen TH, Lin CF, et al. Adiabatic shearing localisation in high strain rate deformation of Al-Sc alloy. Materials Transactions, 2010, 51(7):1216-1221
    18 Teng X, Wierzbicki T, Couque H. On the transition from adiabatic shear banding to fracture. Mechanics of Materials, 2007(39):107-125
    19 Andrade U, Meyer MA, Vecchio KS, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metallurgica et Materialia, 1994, 42(9):3183-3195
    20 刘龙飞, 戴兰宏, 凌中等. 冲击剪切载荷下SiCp/6151Al复合材料变形局部化及增强颗粒尺寸效应. 复合材料学报,2002, 19(4):51-55(Liu Longfei, Dai Lanhong, Ling Zhong, et al. Localized deformation and particle size-effect in particle-rein forced SiCp/6151Al composites under impulsive shear loadings. Acta Materiae Compositae Sinica, 2002, 19(4):51-55(in Chinese))
    21 Clos R, Schreppel U, Veit P. Temperature, microstructure and mechanical response during shear band formation in different metallic materials. Journal de Physique, 2003, 110(4):111-116
    22 Liu LF, Dai LH, Bai YL, et al. Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings. Journal of Non-Crystalline Solids, 2005(351):3259-3270
    23 付应乾,董新龙,虎宏智. 准静态和动态加载TA2工业纯钛受迫剪切破坏演化. 中国有色金属学报, 2015, 25(11):3092-3099(Fu Yingqian, Dong Xinlong, Hu Hongzhi. Quasi-static and dynamic failure evolution of titanium alloy under forced shear loading. The Chinese Journal of Nonferrous Metals, 2015, 25(11):3092-3099(in Chinese))
    24 许泽建, 丁晓燕, 张炜琪等. 一种用于材料高应变率剪切性能测试的新型加载技术. 力学学报, 2016, 48(1):654-659(Xu Zejian, Ding Xiaoyan, Zhang Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):654-659(in Chinese))
    25 付应乾,董新龙. 工业纯钛动态压缩特性及破坏的实验研究. 稀有金属材料与工程, 2016, 45(1):102-106(Fu Yingqian, Dong Xinlong. Experiment study on mechanical properties and failure characteristic of commercially pure titanium under dynamic compression. Rare Metal Materials and Engineering, 2016, 45(1):102-106(in Chinese))
    26 付应乾,董新龙. 帽型试样动态绝热剪切破坏演化分析. 固体力学学报, 2015, 36(5):392-400(Fu Yingqian, Dong Xinlong. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading. Chinese Journal of Solid Mechanics, 2015, 36(5):392-400(in Chinese))
    27 Nemat-Nasser S, Isaaca JB, Liu MQ. Microstructure of high-strain, high-strain-rate deformed Tantalum. Acta Mater, 1998, 46(4):1307-1325
    28 Pérez-Prado MT, Hines JA, Vecchio KS. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys. Acta Mater, 2001, 49:2905-2917
    29 皮萨林科ГC,列别捷夫AA. 复杂应力状态下的材料变形与强度, 江明行译. 北京:科学出版社,1983:32-34
    30 罗文波. 关于"平面纯剪切大变形等效应变分析" 一文的讨论. 塑形工程学报, 2001, 8(1):8-8(Luo Wenbo. Discussion on the equivalent strain of large plane-pure-shear defomaton. Journal of Plasticity Engineering, 2001, 8(1):8-8(in Chinese))
    31 Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of Mechanics Physics of Solids, 1987, 35(1):95-119
  • 期刊类型引用(7)

    1. 吴文苍,董新龙,庞振,周风华. TA2钛合金开口柱壳外爆碎片分布研究. 力学学报. 2021(06): 1795-1806 . 本站查看
    2. 杨阳,庞松,赵枢明,陈小虎,唐盛明,任政,刘燕林,徐永东,付应乾,董新龙. TA2钛动态压缩绝热剪切破坏及有限元模拟. 兵器材料科学与工程. 2020(05): 31-35 . 百度学术
    3. 邹学韬,张晓晴,姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能. 高压物理学报. 2019(02): 134-142 . 百度学术
    4. 宋鹏飞,董新龙,付应乾,索涛. 基于等径通道挤压法的超细晶铜动态剪切变形行为实验研究. 兵工学报. 2018(04): 763-771 . 百度学术
    5. 马维. 金属切屑塑性流动的稳定性. 力学学报. 2018(01): 58-67 . 本站查看
    6. 宋鹏飞,董新龙,周刚毅,付应乾. 帽型试样绝热剪切演化实验及数值模拟. 宁波大学学报(理工版). 2018(02): 50-54 . 百度学术
    7. 支有冉,周玉华. 热处理对TA2材料的金相组织及硬度的影响. 特种铸造及有色合金. 2017(11): 1266-1268 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1204
  • HTML全文浏览量:  191
  • PDF下载量:  631
  • 被引次数: 13
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-09-11
  • 刊出日期:  2016-11-17

目录

    /

    返回文章
    返回