高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (11): 20220308.doi: 10.7503/cjcu20220308
收稿日期:
2022-05-07
出版日期:
2022-11-10
发布日期:
2022-08-01
通讯作者:
曾艳宁
E-mail:ynzeng@glut.edu.cn
基金资助:
YANG Weiming, XI Aoqian, YANG Bin, ZENG Yanning()
Received:
2022-05-07
Online:
2022-11-10
Published:
2022-08-01
Contact:
ZENG Yanning
E-mail:ynzeng@glut.edu.cn
Supported by:
摘要:
以三羟甲基丙烷三缩水甘油醚(TTE)为基体, 2,2′-(1,4-亚苯基)-双[4-硫醇1,3,2-二氧杂戊烷](BDB)和3,3-二硫代二丙酸(DTDPA)为交联剂, 通过环氧-巯基“点击”反应和环氧-羧酸酯化反应, 制备了基于多重动态共价键(硼酸酯键、 二硫键和酯键)的环氧类玻璃网络. 利用红外光谱和拉曼光谱对其结构进行了表征, 结果表明, 环氧类玻璃中不仅存在硼酸酯键、 二硫键和酯键, 还存在可逆氢键, 并且大量氢键的存在能提高环氧类玻璃的交联度. 对所得环氧网络的热稳定性、 热机械性能和力学性能进行了测试, 并对基于多重动态共价键环氧网络进行了自修复、 焊接、 形状记忆和再加工能力测试. 结果表明, 在80 ℃下可实现网络的完全自修复、 再加工与焊接, 且焊接后样品的力学性能(拉伸强度)恢复率在80%以上, 具有优异的功能性.
中图分类号:
TrendMD:
杨伟明, 席澳千, 杨斌, 曾艳宁. 基于多重动态共价键的环氧类玻璃网络的制备与性能. 高等学校化学学报, 2022, 43(11): 20220308.
YANG Weiming, XI Aoqian, YANG Bin, ZENG Yanning. Fabrication and Properties of Epoxy Vitrimer Based on Multiply Dynamic Covalent Bonds. Chem. J. Chinese Universities, 2022, 43(11): 20220308.
Fig.2 FTIR spectra of BDB, DTDPA, TTE and TBD?3∶2(A) and different TBD?x:y(B, C)(C) Amplification of the FTIR spectra of different TBD-X∶Y in 1610—1680 cm-1 range.
Fig.4 Stress?strain curves(A) and mechanical properties(B) of different TBD?x:y samples(B) a.TBD-1∶0; b. TBD-2∶1; c. TBD-3∶2; d. TBD-1∶1; e. TBD-2:∶3; f. TBD-1∶2; g. TBD-0∶1.
Sample | Tg/℃ | E'/MPa | 10-3 Ve/ (mol?cm-3) | Tensile strength/MPa | Elongation at break(%) | Toughness modulus/(MJ?m-3) | T5d /℃ | Residual mass at 800 ℃(%) |
---|---|---|---|---|---|---|---|---|
TBD?1∶0 | 40 | 7.65 | 0.89 | 44.50±2.57 | 16.5±1.02 | 3.75±0.22 | 267 | 18.3 |
TBD?2∶1 | 34 | 7.64 | 0.91 | 29.90±2.88 | 35.5±3.08 | 6.95±0.56 | 271 | 17.6 |
TBD?3∶2 | 31 | 7.60 | 0.91 | 17.70±1.16 | 144.0±10.9 | 19.70±1.87 | 271 | 16.4 |
TBD?1∶1 | 27 | 8.03 | 0.97 | 14.30±2.74 | 164.0±12.7 | 17.10±1.28 | 271 | 16.0 |
TBD?2∶3 | 24 | 7.75 | 0.95 | 9.01±1.03 | 145.0±10.8 | 8.54±1.01 | 272 | 15.6 |
TBD?1∶2 | 19 | 7.00 | 0.87 | 8.60±0.99 | 125.0±12.9 | 6.23±0.59 | 272 | 13.5 |
TBD?0∶1 | 7 | 6.74 | 0.87 | 1.55±0.20 | 54.0±7.10 | 0.48±0.05 | 286 | 11.7 |
Table 1 Thermal and mechanical properties of the TBD-x:y samples
Sample | Tg/℃ | E'/MPa | 10-3 Ve/ (mol?cm-3) | Tensile strength/MPa | Elongation at break(%) | Toughness modulus/(MJ?m-3) | T5d /℃ | Residual mass at 800 ℃(%) |
---|---|---|---|---|---|---|---|---|
TBD?1∶0 | 40 | 7.65 | 0.89 | 44.50±2.57 | 16.5±1.02 | 3.75±0.22 | 267 | 18.3 |
TBD?2∶1 | 34 | 7.64 | 0.91 | 29.90±2.88 | 35.5±3.08 | 6.95±0.56 | 271 | 17.6 |
TBD?3∶2 | 31 | 7.60 | 0.91 | 17.70±1.16 | 144.0±10.9 | 19.70±1.87 | 271 | 16.4 |
TBD?1∶1 | 27 | 8.03 | 0.97 | 14.30±2.74 | 164.0±12.7 | 17.10±1.28 | 271 | 16.0 |
TBD?2∶3 | 24 | 7.75 | 0.95 | 9.01±1.03 | 145.0±10.8 | 8.54±1.01 | 272 | 15.6 |
TBD?1∶2 | 19 | 7.00 | 0.87 | 8.60±0.99 | 125.0±12.9 | 6.23±0.59 | 272 | 13.5 |
TBD?0∶1 | 7 | 6.74 | 0.87 | 1.55±0.20 | 54.0±7.10 | 0.48±0.05 | 286 | 11.7 |
Fig.10 Optical microscopy image showing the welding performance of TBD?3∶2(A) and schematic diagram of exchange reactions of boronic ester bond, disulfide bond and ester bond(B)
Fig.14 Stress?strain curves(A, C) and mechanical properties recovery rate(B, D) of TBD?3∶2 with different hot?pressing time(A, B) and with different reprocessing times(C, D)
1 | Yang Y., Xu Y., Ji Y., Wei Y., Prog. Mater. Sci., 2021, 120, 100710 |
2 | Jin F. L., Li X., Park S. J., J. Ind. Eng. Chem., 2015, 29, 1—11 |
3 | Auvergne R., Caillol S., David G., Boutevin B., Pascault J. P., Chem. Rev., 2013, 114(2), 1082—1115 |
4 | Bi Z. G., China Elastomerics, 2021, 31(2), 61—65 |
毕治功.弹性体, 2021, 31(2), 61—65 | |
5 | Balkenende D. W. R., Olson R. A., Balog S., Weder C., Montero de Espinosa L., Macromolecules, 2016, 49(20), 7877—7885 |
6 | Hu Z., Liu Y., Xu X., Yuan W., Yang L., Shao Q., Guo Z., Ding T., Huang Y., Polymer, 2019, 164, 79—85 |
7 | Kuang X., Liu G., Dong X., Liu X., Xu J., Wang D., J. Polym. Sci. A: Polym. Chem., 2015, 53(18), 2094—2103 |
8 | Bai N., Saito K., Simon G. P., Polym. Chem., 2013, 4(3), 724—730 |
9 | Montarnal D., Capelot M., Tournilhac F., Leibler L., Science, 2011, 334(6058), 965—968 |
10 | Ruiz de Luzuriaga A., Matxain J. M., Ruipérez F., Martin R., Asua J. M., Cabañero G., Odriozola I., J. Mater. Chem. C, 2016, 4(26), 6220—6223 |
11 | Memon H., Liu H., Rashid M. A., Chen L., Jiang Q., Zhang L., Wei Y., Liu W., Qiu Y., Macromolecules, 2020, 53(2), 621—630 |
12 | Liu Q., Jiang L., Zhao Y., Wang Y., Lei J., Macromol. Chem. Phys., 2019, 220(13), 1900149 |
13 | Azcune I., Odriozola I., Eur. Polymer J., 2016, 84, 147—160 |
14 | Xiang H. P., Rong M. Z., Zhang M. Q., Polymer, 2017, 108, 339—347 |
15 | Lei M. J., Guangdong Chemical Industry, 2015, 42(4), 65—66 |
雷敏娟. 广东化工, 2015, 42(4), 65—66 | |
16 | Chen M., Zhou L., Wu Y., Zhao X., Zhang Y., ACS Macro. Lett., 2019, 8(3), 255—260 |
17 | Xu X., Ma S., Feng H., Qiu J., Wang S., Yu Z., Zhu J., Polym. Chem., 2021, 12(36), 5217—5228 |
18 | Zeng Y., Li J., Liu S., Yang B., Polymers, 2021, 13(19), 3386 |
19 | Zeng Y. N., Liu S. X., Xu X. M., Chen Y., Zhang F. A., Polymer, 2020, 211, 123116 |
20 | Wang W., Zhang W., Liu Z., Xue Y., Lei X., Gong G., Zhang Q., J. Mater. Chem. C, 2021, 9(19), 6241—6250 |
21 | Chen Y., Tang Z. H., Zhang X. H., Liu Y. J., Wu S. W., Guo B. C., ACS Appl. Mater. Interfaces, 2018, 10(28), 24224—24231 |
22 | Chen Y., Tang Z. H., Liu Y. J., Wu S. W., Guo B. C., Macromolecules, 2019, 52(10), 3805—3812 |
23 | Xu Y., Fu P., Dai S., Zhang H., Bi L., Jiang J., Chen Y., Ind. Crop. Prod., 2021, 171, 113978 |
24 | Wang S., Teng N., Dai J., Liu J., Cao L., Zhao W., Liu X., Polymer, 2020, 210, 123004 |
25 | Chen J., Li F., Luo Y., Shi Y., Ma X., Zhang M., Boukhvalov D. W., Luo Z., J. Mater. Chem. A, 2019, 7(25), 15207—15214 |
26 | Zhang J. N., Zhang B., Shen J. L., J. Infrared and Millimeter Waves, 2017, 36(5), 538—542 |
张建娜, 张波, 沈京玲. 红外与毫米波学报, 2017, 36(5), 538—542 | |
27 | Breuillac A., Caffy F., Vialon T., Nicolaÿ R., Polym. Chem., 2020, 11(40), 6479—6491 |
28 | Li J., Ning Z., Yang W., Yang B., Zeng Y., ACS Omega, 2022, 7(12), 10156—10166 |
29 | Hu Y., Tang G., Luo Y., Chi S., Li X., Polym. Chem., 2021, 12(28), 4072—4082 |
30 | Jian X., Hu Y., Zhou W., Xiao L., Polym. Adv. Technol., 2018, 29(1), 463—469 |
31 | Wang S., Ma S., Li Q., Yuan W., Wang B., Zhu J., Macromolecules, 2018, 51(20), 8001—8012 |
32 | di Mauro C., Malburet S., Genua A., Graillot A., Mija A., Biomacromolecules, 2020, 21(9), 3923—3935 |
33 | Herc A. S., Lewiński P., Kaźmierski S., Bojda J., Kowalewska A., Thermochim. Acta, 2020, 687, 178592 |
34 | Chen S. S., Ai L. H., Zhang T., Liu P., Liu W. S., Pan Y. H., Liu D. F., Arab. J. Chem., 2020, 13(1), 2982—2994 |
35 | Memon H., Wei Y., Zhu C., Mater. Today Commun., 2021, 29, 102814 |
36 | Brutman J. P., Delgado P. A., Hillmyer M. A., ACS Macro. Lett., 2014, 3(7), 607—610 |
37 | Capelot M., Unterlass M. M., Tournilhac F., Leibler L., ACS Macro. Lett., 2012, 1(7), 789—792 |
38 | Breuillac A., Kassalias A., Nicolaÿ R., Macromolecules, 2019, 52(18), 7102—7113 |
39 | Su X., Zhou Z., Liu J., Luo J., Liu R., Eur. Polymer J., 2020, 140, 110053 |
40 | Krishnakumar B., Sanka R., Binder W. H., Parthasarthy V., Rana S., Karak N., Chem. Eng. J., 2020, 385, 123820 |
41 | Liu Y., Tang Z., Chen J., Xiong J., Wang D., Wang S., Wu S., Guo B., Polym. Chem., 2020, 11(7), 1348—1355 |
42 | van Zee N. J., Nicolaÿ R., Prog. Polym. Sci., 2020, 104, 101233 |
43 | Zhang L., Rowan S. J., Macromolecules, 2017, 50(13), 5051—5060 |
44 | Yu K., Shi Q., Li H., Jabour J., Yang H., Dunn M. L., Wang T., Qi H. J., J. Mech. Phys. Solid, 2016, 94, 1—17 |
45 | Li Z. J., Zhong J., Liu M. C., Rong J. C., Yang K., Zhou J. Y., Shen L., Gao F., He H. F., Chinese J. Polym. Sci., 2020, 38(9), 932—940 |
46 | Capelot M., Montarnal D., Tournilhac F., Leibler L., J. Am. Chem. Soc., 2012, 134(18), 7664—7667 |
47 | Yang X., Guo L., Xu X., Shang S., Liu H., Mater. Des., 2020, 186, 108248 |
48 | Lv Y., Pan Z., Song C., Chen Y., Qian X., Soft Matter, 2019, 15(30), 6171—6179 |
49 | Liu T., Hao C., Wang L., Li Y., Liu W., Xin J., Zhang J., Macromolecules, 2017, 50(21), 8588—8597 |
50 | Li B., Zhu G., Hao Y., Ren T., J. Appl. Polym. Sci., 2021, 139(5), 51589 |
51 | Si G., Qi M., Tan C., Chen C., Macromolecules, 2021, 54(13), 6153—6160 |
52 | Li Y. Z., Zhang Y. H., Rios O., Keum J. K., Kessler M. R., Soft Matter, 2017, 13(29), 5021—5027 |
[1] | 高慧玲, 曹珍珍, 顾芳, 王海军. 氢键型水凝胶自修复行为的Monte Carlo模拟[J]. 高等学校化学学报, 2022, 43(11): 20220482. |
[2] | 李聪, 刘欢欢, 杨桂花, 田中建, 颜家强, 吉兴香, 韩文佳, 陈嘉川. 基于肟-氨基甲酸酯的超强自修复水性聚氨酯胶粘剂的制备及性能分析[J]. 高等学校化学学报, 2021, 42(8): 2651. |
[3] | 王琳琳, 李磊, 冯圣玉. 有机硅超分子材料研究进展[J]. 高等学校化学学报, 2021, 42(7): 2111. |
[4] | 郭文瑾, 王晓晗, 李想, 李洋, 孙俊奇. 基于金属配位键的自修复、 可重塑聚丁二烯橡胶的合成及性能[J]. 高等学校化学学报, 2020, 41(9): 2090. |
[5] | 盛叶明,程波,卢珣. 基于多重可逆作用的自修复聚氨酯弹性体的制备及性能[J]. 高等学校化学学报, 2020, 41(3): 572. |
[6] | 林木松, 彭磊, 张晟, 李丽, 付强, 侯君波. 电缆护套光屏蔽自愈合涂料的制备及性能[J]. 高等学校化学学报, 2019, 40(8): 1766. |
[7] | 高飞龙, 李永存, 栾云博, 薛志成, 郭章新, 张祺, 吴桂英. 不同石墨烯-碳纳米管杂化体系对热塑性聚氨酯复合材料力学和自修复性能的增强机制[J]. 高等学校化学学报, 2018, 39(4): 832. |
[8] | 刘洪婉, 魏芳, 万丽, 顾芳, 王海军. 动态键型凝胶自修复行为的Monte Carlo模拟[J]. 高等学校化学学报, 2018, 39(2): 367. |
[9] | 林木松, 彭磊, 付强, 钱艺华, 陈天生, 张晟, 马晓茜. 基于主客体包合作用的自修复绝缘材料制备及性能[J]. 高等学校化学学报, 2018, 39(11): 2572. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 531
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||