首页 | 本学科首页   官方微博 | 高级检索  
     


Direct Vapor Phase Carbonylation of Methanol over NiCl2/C Catalyst
Authors:PENG Feng
Affiliation:Department of Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
Abstract:Introduction The carbonylation of alcohols via homogenous catalysis is important in manufacturing acetic acid and higher carboxylic acids and their esters[1,2]. The main route to produce acetic acid is to make methanol carbonylated by means of the Monsanto and BP process in which a homogeneous rhodium catalyst is used. Although the homogeneous carbonylation of methanol is a highly selective process, it is affected by the disadvantages associated with a highly corrosive reaction medium due to the use of methyl iodide as the promoter, and the difficulty of the product separation[3]. The use of a heterogeneous catalyst seems very interesting and attractive to us[4], especially the direct vapor phase carbonylation of methanol without a halide promoter is of considerable importance and is strong incentive economically. There has, however, been very little success in finding either heterogeneous or homogeneous catalysts that can catalyze the reaction effectively without the addition of a promoter[5,6]. According to the known carbonylation mechanism[7,8], the methyl iodide directly carbonylates with CO to from MeCOI which interacts with methanol(MeOH) to produce methyl acetate(MeCOOMe) and HI, and then MeOH reacts with HI to from CH3I. In fact, this carbonylation reaction is the indirect catalytic carbonylation of methanol[9]. In this work, a novel catalyst for the direct vapor phase carbonylation of methanol without the addition of any halide in the feed as a promoter was investigated. Compared to the known liquid phase methanol carbonylation process, some advantages of this vapor phase reaction are as follows:
Keywords:Methanol  Vapor phase carbonylation  Catalyst  Nickel chloride  Methyl acetate
本文献已被 CNKI 等数据库收录!
点击此处可从《高等学校化学研究》浏览原始摘要信息
点击此处可从《高等学校化学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号