Fabrication of boronate‐decorated polyhedral oligomeric silsesquioxanes grafted cotton fiber for the selective enrichment of nucleosides in urine |
| |
Authors: | Li Gao Yinmao Wei |
| |
Affiliation: | Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China |
| |
Abstract: | Various cotton fiber based boronate‐affinity adsorbents are recently developed for the sample pretreatment of cis‐diol‐containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4‐formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis‐diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in‐pipette‐tip solid‐phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in‐pipette‐tip solid‐phase extraction coupled with high‐performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N = 3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9–10.2%, n = 3). |
| |
Keywords: | Boronate affinity Cotton fiber Nucleosides Pipette‐tip solid‐phase extraction Polyhedral oligomeric silsesquioxanes |
|
|