首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法参数优化的PCNN红外图像分割
引用本文:曲仕茹, 杨红红. 基于遗传算法参数优化的PCNN红外图像分割[J]. 强激光与粒子束, 2015, 27: 051007. doi: 10.11884/HPLPB201527.051007
作者姓名:曲仕茹  杨红红
作者单位:1.西北工业大学 自动化学院, 西安 71 0072
摘    要:构造一种基于遗传算法参数优化的脉冲耦合神经网络(PCNN)红外图像分割算法。该算法首先利用PCNN的全局耦合性和脉冲同步性对输入图像进行点火处理,根据PCNN的输出结果计算熵作为遗传算法的适应度函数,并利用熵的变化量作为遗传算法的收敛依据,对PCNN模型中影响图像分割的参数进行组合优化,结合PCNN生物视觉特性和遗传算法解空间随机搜索能力来寻找关键参数的最优值。将遗传算法和PCNN进行结合可充分发挥二者优势,将本文方法与最大类间方差法(OTSU)、最大熵直方图分割算法和PCNN分割方法进行对比,通过交叉熵、区域对比度等客观指标对分割后的图像进行定量分析,结果表明无论从主观视觉还是客观指标,本文方法分割效果优于其他对比方法。

关 键 词:红外图像   遗传算法   脉冲耦合神经网络   参数优化   图像分割
收稿时间:2014-09-22
修稿时间:2015-02-02

Infrared image segmentation based on PCNN with genetic algorithm parameter optimization
Qu Shiru, Yang Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27: 051007. doi: 10.11884/HPLPB201527.051007
Authors:Qu Shiru  Yang Honghong
Affiliation:1. School of Automation,Northwestern Polytechnical University,Xi’an 710072,China
Abstract:A PCNN infrared image segmentation algorithm based on genetic algorithm parameter optimization is proposed. The algorithm first carries out the ignition process for input images using PCNN global coupling and pulse synchronization. Entropy is calculated according to the PCNN output and used for the fitness function of genetic algorithm. The entropy change is used as the convergence criterion of genetic algorithm. Combination of optimization is made for parameters effecting image segmentation in PCNN model. To find the optimal values of key parameters biological visual characteristics of PCNN and solution space random search of the genetic algorithm are adopted. Combination of genetic algorithm and PCNN can make full use of the advantages. Compared with OTSU, maximum entropy histogram segmentation algorithm and PCNN segmentation method, quantitative analysis is conducted for the image after segmentation using cross entropy and region contrast objective index. Simulation results show that, judging either by subjective vision or by objective index, the proposed method is superior to other comparative method in segmentation effect.
Keywords:infrared image  genetic algorithm  pulse coupled neural network  parameter optimization  image segmentation
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号