首页 | 本学科首页   官方微博 | 高级检索  
     


Structures and thermochemistry of methyl ethyl sulfide and its hydroperoxides: HOOCH2SCH2CH3, CH3SCH(OOH)CH3, CH3SCH2CH2OOH,and radicals
Authors:Guanghui Song  Joseph W. Bozzelli
Affiliation:Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
Abstract:Hydroperoxides and the corresponding peroxy radicals are important intermediates during the partial oxidation of methyl ethyl sulfide (CH3SCH2CH3) in both atmospheric chemistry and in combustion. Structural parameters, internal rotor potentials, bond dissociation energies, and thermochemical properties (ΔHfo, So and Cp(T)) of 3 corresponding hydroperoxides CH2(OOH)SCH2CH3, CH3SCH(OOH)CH3, CH3SCH2CH2OOH of methyl ethyl sulfides, and the radicals formed via loss of a hydrogen atom are important to understanding the oxidation reactions of MES. The lowest energy molecular structures were identified using the density functional B3LYP/6‐311G(2d,d,p) level of theory. Standard enthalpies of formation (ΔHfo298) for the radicals and their parent molecules were calculated using the density functional B3LYP/6‐31G(d,p), B3LYP/6‐31 + G(2d,p), and the composite CBS‐QB3 ab initio methods. Isodesmic reactions were used to determine ?Hfo values. Internal rotation potential energy diagrams and rotation barriers were investigated using the B3LYP/6‐31G(d,p) level theory. Contributions for So298 and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation based on the structures and vibrational frequencies obtained by the density functional calculations, with contributions from torsion frequencies replaced by internal rotor contributions. The recommended values for enthalpies of formation of the most stable conformers of CH3SCH2CH2, CH2(OOH)SCH2CH3, CH3SCH(OOH)CH3, and CH3SCH2CH2OOH are ?14.0, ?33.0, ?37.2, and ?32.7 kcal/mol, respectively. Group additivity values were developed for estimating properties of structurally similar and larger sulfur‐containing peroxides. Groups for use in group additivity estimation of sulfur peroxide thermochemical properties were developed.
Keywords:bond energies  enthalpy  entropy  group additivity  heat capacity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号