首页 | 本学科首页   官方微博 | 高级检索  
     


An improved memristor model for brain-inspired computing
Affiliation:State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
Abstract:Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover,the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.
Keywords:memristor  drift diffusion model  synaptic  brain-inspired computing  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号