Mechanical,elastic, anisotropy,and electronic properties of monoclinic phase of m-Si_xGe_(3-x)N_4 |
| |
Affiliation: | Tianjin Key Laboratory for Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China |
| |
Abstract: | The structural, mechanical, elastic anisotropic, and electronic properties of the monoclinic phase of m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are systematically investigated in this work. The calculated results of lattice parameters, elastic constants and elastic moduli of m-Si3N4 and m-Ge3N4 are in good agreement with previous theoretical results. Using the Voigt-Reuss-Hill method, elastic properties such as bulk modulus B and shear modulus G are investigated. The calculated ratio of B/G and Poisson's ratio v show that only m-SiGe2N4 should belong to a ductile material in nature. In addition, m-SiGe2N4 possesses the largest anisotropic shear modulus, Young's modulus, Poisson's ratio, and percentage of elastic anisotropies for bulk modulus AB and shear modulus AG, and universal anisotropic index AU among m-SixGe3-xN4 (x=0, 1, 2, 3.) The results of electronic band gap reveal that m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are all direct and wide band gap semiconducting materials. |
| |
Keywords: | SixGe3-xN4 mechanical properties elastic anisotropic electronic properties |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|