首页 | 本学科首页   官方微博 | 高级检索  
     

带有资源柔性约束的max-NPV分布式多项目调度问题
引用本文:刘万琳,张静文,刘婉君. 带有资源柔性约束的max-NPV分布式多项目调度问题[J]. 运筹与管理, 2021, 30(8): 37-43. DOI: 10.12005/orms.2021.0244
作者姓名:刘万琳  张静文  刘婉君
作者单位:西北工业大学 管理学院,陕西 西安 710072
基金项目:国家自然科学基金资助项目(71971173,71572148);陕西省博士后基金(2017BSHYDZZ22);中央高校基本科研业务费项目(3102019JC02);西北工业大学研究生创新基金资助项目(ZZ2019038);西北工业大学文美文科交叉学科方向培育项目(21GH-31128)
摘    要:现有的分布式资源约束多项目调度问题研究中,假定全局资源限量在多项目工期内不可突破且多以工期为优化目标。针对此问题,考虑全局资源可从外部获取,以净现值为目标,构建带有全局资源柔性约束的分布式多项目调度问题的整数规划模型并设计有效的求解算法。首先,界定问题并确定项目现金流的计算方法;然后,针对求解问题的NP-hard属性,设计了遗传-模拟退火混合算法(GA_SA)求解此模型。最后,通过多组数值实验,设计不同算法与GA_SA算法进行比较,并分析了关键参数对多项目净现值的影响。结果表明,GA_SA算法具有较好的求解效果;与传统的全局资源刚性约束条件相比,全局资源柔性使用状态可以显著改善分布式多项目的收益绩效。

关 键 词:分布式多项目调度  资源柔性约束  净现值  遗传-模拟退火混合算法  
收稿时间:2019-11-28

Max-NPV of Distributed Multi-project Scheduling Problem with Resource Flexibility Constraints
LIU Wan-lin,ZHANG Jing-wen,LIU Wan-jun. Max-NPV of Distributed Multi-project Scheduling Problem with Resource Flexibility Constraints[J]. Operations Research and Management Science, 2021, 30(8): 37-43. DOI: 10.12005/orms.2021.0244
Authors:LIU Wan-lin  ZHANG Jing-wen  LIU Wan-jun
Affiliation:School of Management, Northwestern Polytechnical University, Xi'an, 710072, China
Abstract:The existing studies on distributed resource constrained multi-project scheduling problem have assumed that the global resource limit cannot be broken during the multi-project duration and taken the makespan as the optimization objective. Considering global resources that can be obtained from the outside, this study constructs an integer programming model of distributed flexible resource-constrained multi-project scheduling problem with the objective of max-NPV and designs an effective algorithm to solve the problem. Firstly, the problem is defined and project cash flow calculation is determined. Then, due to NP-hard of the problem, a genetic-simulated annealing hybrid algorithm (GA_SA) is designed to solve the model. Finally, other algorithms used to compare with GA_SA algorithm are designed through multiple numerical experiments, and the impact of key parameters on the net present value of multi-projects is analyzed. The results demonstrate that the GA_SA algorithm has good solution effects, and global resource with flexible usage status can improve the performance of distributed multi-project profit significantly.
Keywords:distributed multi-project scheduling  resource flexibility constraints  net present value  genetic-simulated annealing hybrid algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号