首页 | 本学科首页   官方微博 | 高级检索  
     


Understanding the basis of I50V‐induced affinity decrease in HIV‐1 protease via molecular dynamics simulations using polarized force field
Authors:Rui Duan  Raudah Lazim  Dawei Zhang
Affiliation:Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
Abstract:Human immunodeficiency virus (HIV)‐1 protease is one of the most promising drug target commonly utilized to combat Acquired Immune Deficiency Syndrome (AIDS). However, with the emergence of drug resistance arising from mutations, the efficiency of protease inhibitors (PIs) as a viable treatment for AIDS has been greatly reduced. I50V mutation as one of the most significant mutations occurring in HIV‐1 protease will be investigated in this study. Molecular dynamics (MD) simulation was utilized to examine the effect of I50V mutation on the binding of two PIs namely indinavir and amprenavir to HIV‐1 protease. Prior to the simulations conducted, the electron density distributions of the PI and each residue in HIV‐1 protease are derived by combining quantum fragmentation approach molecular fractionation with conjugate caps and Poisson–Boltzmann solvation model based on polarized protein‐specific charge scheme. The atomic charges of the binding complex are subsequently fitted using delta restrained electrostatic potential (delta‐RESP) method to overcome the poor charge determination of buried atom. This way, both intraprotease polarization and the polarization between protease and the PI are incorporated into partial atomic charges. Through this study, the mutation‐induced affinity variations were calculated and significant agreement between experiments and MD simulations conducted was observed for both HIV‐1 protease‐drug complexes. In addition, the mechanism governing the decrease in the binding affinity of PI in the presence of I50V mutation was also explored to provide insights pertaining to the design of the next generation of anti‐HIV drugs. © 2015 Wiley Periodicals, Inc.
Keywords:polarization  HIV‐1 protease  mutation  drug resistance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号