Uniqueness of the density in an inverse problem for isotropic elastodynamics |
| |
Authors: | Lizabeth V. Rachele |
| |
Affiliation: | Department of Mathematics, Tufts University, Medford, Massachusetts 02155 |
| |
Abstract: | We consider the unique determination of the density of a nonhomogeneous, isotropic elastic object from measurements made at the surface. We model the behavior of the bounded, 3-dimensional object by the linear, hyperbolic system of operators for isotropic elastodynamics. The material properties of the object (its density and elastic properties) correspond to the smooth coefficients of these differential operators. The data for this inverse problem, in the form of the correspondence between applied surface tractions and resulting surface displacements, is modeled by the dynamic Dirichlet-to-Neumann map on a finite time interval. In an earlier paper we show that the speeds of (compressional and sheer) wave propagation through the object are uniquely determined by the Dirichlet-to-Neumann map. Here we extend that result by showing that the density is also determined in the interior by the Dirichlet-to-Neumann map in the case, for example, that at only isolated points in the object. We use techniques from microlocal analysis and integral geometry to solve this fully three-dimensional problem. |
| |
Keywords: | |
|
| 点击此处可从《Transactions of the American Mathematical Society》浏览原始摘要信息 |
|
点击此处可从《Transactions of the American Mathematical Society》下载全文 |
|