首页 | 本学科首页   官方微博 | 高级检索  
     

有机硫化合物在锂硫电池中的应用
引用本文:屈卓研,张笑银,肖茹,孙振华,李峰. 有机硫化合物在锂硫电池中的应用[J]. 物理化学学报, 2023, 39(8): 2301019-0. DOI: 10.3866/PKU.WHXB202301019
作者姓名:屈卓研  张笑银  肖茹  孙振华  李峰
作者单位:1 中国科学院金属研究所, 沈阳材料科学国家研究中心, 沈阳 1100162 中国科学技术大学材料科学与工程学院, 沈阳 110016
基金项目:国家自然科学基金(51972313);国家自然科学基金(52020105010);国家自然科学基金(52188101);国家重点研发计划(2021YFB2800201);国家重点研发计划(2021YFB3800301);中科院先导专项(XDA22010602);中国科学院青年创新促进会优秀会员项目(Y201942);辽宁省“兴辽英才”计划(XLYC2007080);辽宁省“兴辽英才”计划(XLYC1908015)
摘    要:锂硫电池具有理论能量密度高、环境友好和成本低等优点,有望成为替代锂离子电池的新一代储能系统。然而,锂硫电池充放电产物的绝缘性、可溶性多硫化锂的穿梭效应、硫正极体积膨胀及锂枝晶的不可控生长,严重影响了锂硫电池的实际容量发挥和循环稳定性。为解决上述问题,采用有机硫化合物来替代单质硫作为正极材料是有前途的策略。调控有机硫化合物的硫链、碳链及其相互作用,可改变其电化学反应过程,提高离子/电子电导,抑制穿梭效应。有机硫化合物作为电解液添加剂,可调控硫正极的反应过程并保护金属锂负极,作为聚合物电解质的改性链段可加速锂离子传导。本综述对有机硫化合物在锂硫电池的正极、电解液添加剂和固态电解质中的应用研究进展进行详细的阐述。将有机硫化合物的结构、反应机理和电化学性质联系起来,为解决锂硫电池存在的问题提供见解。最后,提出高性能有机硫化合物的设计合成和机理研究思路,以期实现可实用化的锂硫电池。

关 键 词:锂硫电池  有机硫化合物  穿梭效应  电解液添加剂  聚合物固态电解质  电化学储能  
收稿时间:2023-01-12

Application of Organosulfur Compounds in Lithium-Sulfur Batteries
Qu Zhuoyan,Zhang Xiaoyin,Xiao Ru,Sun Zhenhua,Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(8): 2301019-0. DOI: 10.3866/PKU.WHXB202301019
Authors:Qu Zhuoyan  Zhang Xiaoyin  Xiao Ru  Sun Zhenhua  Li Feng
Affiliation:1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract:Lithium-sulfur batteries are one of the prospective next-generation power sources that can replace commercial lithium-ion batteries owing to their high theoretical energy density, eco-friendliness, and low cost. However, the insulating nature of the charge–discharge products, the shuttle effect of soluble lithium polysulfides, the volume expansion of the sulfur cathode, and the uncontrollable growth of lithium dendrites severely affect the actual capacity and cycling stability of lithium-sulfur batteries. Replacing the inorganic sulfur (S8) cathode with an organosulfur-based cathode is a promising strategy for resolving the aforementioned issues. By modulating the fundamental units of the organosulfur compound, including the sulfur chain, carbon chain, and their interactions, the electrochemical reaction process can be altered, the ion/electron conductivity can be increased, and the shuttle effect can be effectively suppressed. In addition, organosulfur compounds as electrolyte additives can regulate the reaction process of the sulfur cathode and protect the lithium anode by forming a stable solid electrolyte interface, and as polymer electrolyte segments, they can accelerate the conduction of lithium ions. This review provides a detailed outline of the research progress and application of organosulfur compounds as cathodes, electrolyte additives, and solid-state electrolytes in lithium-sulfur batteries. The structure, reaction mechanism, and electrochemical properties of organosulfur compounds are correlated to provide comprehensive insights that can help address the prevailing issues of lithium-sulfur batteries. Finally, future prospects, including the challenges and potential solutions, are presented to guide the design, synthesis, and mechanistic studies of high-performance organosulfur compounds to realize a practical lithium-sulfur battery.
Keywords:Lithium-sulfur battery  Organosulfur compound  Shuttle effect  Electrolyte additive  Polymer solid-state electrolyte  Electrochemical energy storage  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号