Abstract: | We present the synthesis and switching studies of systems with two photochromic dihydroazulene (DHA) units connected by a phenylene bridge at either para or meta positions, which correspond to a linear or cross‐conjugated pathway between the photochromes. According to UV/Vis absorption and NMR spectroscopic measurements, the meta‐phenylene‐bridged DHA–DHA exhibited sequential light‐induced ring openings of the two DHA units to their corresponding vinylheptafulvenes (VHFs). Initially, the VHF–DHA species was generated, and, ultimately, after continued irradiation, the VHF–VHF species. Studies in different solvents and quantum chemical calculations indicate that the excitation of DHA–VHF is no longer a local DHA excitation but a charge‐transfer transition that involves the neighboring VHF unit. For the linearly conjugated para‐phenylene‐bridged dimer, electronic communication between the two units is so efficient that the photoactivity is reduced for both the DHA–DHA and DHA–VHF species, and DHA–DHA, DHA–VHF, and VHF–VHF were all present during irradiation. In all, by changing the bridging unit, we can control the degree of stepwise photoswitching. |